login
A017679
Numerator of sum of -8th powers of divisors of n.
3
1, 257, 6562, 65793, 390626, 843217, 5764802, 16843009, 43053283, 50195441, 214358882, 71955611, 815730722, 740777057, 2563287812, 4311810305, 6975757442, 11064693731, 16983563042, 12850228209, 37828630724, 27545116337, 78310985282, 55261912529, 152588281251
OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
LINKS
FORMULA
Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^8*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017680(n) = zeta(8) (A013666).
Dirichlet g.f. of a(n)/A017680(n): zeta(s)*zeta(s+8).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017680(k) = zeta(9) (A013667). (End)
EXAMPLE
1, 257/256, 6562/6561, 65793/65536, 390626/390625, 843217/839808, 5764802/5764801, 16843009/16777216, ...
MATHEMATICA
Table[Numerator[DivisorSigma[8, n]/n^8], {n, 1, 20}] (* G. C. Greubel, Nov 07 2018 *)
PROG
(PARI) vector(20, n, numerator(sigma(n, 8)/n^8)) \\ G. C. Greubel, Nov 07 2018
(Magma) [Numerator(DivisorSigma(8, n)/n^8): n in [1..20]]; // G. C. Greubel, Nov 07 2018
CROSSREFS
Cf. A017680 (denominator), A013666, A013667.
Sequence in context: A321564 A034682 A351303 * A013956 A294303 A036086
KEYWORD
nonn,frac
STATUS
approved