OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
FORMULA
Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^8*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018
From Amiram Eldar, Apr 02 2024: (Start)
Dirichlet g.f. of a(n)/A017680(n): zeta(s)*zeta(s+8).
EXAMPLE
1, 257/256, 6562/6561, 65793/65536, 390626/390625, 843217/839808, 5764802/5764801, 16843009/16777216, ...
MATHEMATICA
Table[Numerator[DivisorSigma[8, n]/n^8], {n, 1, 20}] (* G. C. Greubel, Nov 07 2018 *)
PROG
(PARI) vector(20, n, numerator(sigma(n, 8)/n^8)) \\ G. C. Greubel, Nov 07 2018
(Magma) [Numerator(DivisorSigma(8, n)/n^8): n in [1..20]]; // G. C. Greubel, Nov 07 2018
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
STATUS
approved