login
A351273
Sum of the 10th powers of the squarefree divisors of n.
11
1, 1025, 59050, 1025, 9765626, 60526250, 282475250, 1025, 59050, 10009766650, 25937424602, 60526250, 137858491850, 289537131250, 576660215300, 1025, 2015993900450, 60526250, 6131066257802, 10009766650, 16680163512500, 26585860217050, 41426511213650, 60526250
OFFSET
1,2
COMMENTS
Inverse Möbius transform of n^10 * mu(n)^2. - Wesley Ivan Hurt, Jun 08 2023
LINKS
N. J. A. Sloane, Transforms.
FORMULA
a(n) = Sum_{d|n} d^10 * mu(d)^2.
Multiplicative with a(p^e) = 1 + p^10. - Amiram Eldar, Feb 06 2022
G.f.: Sum_{k>=1} mu(k)^2 * k^10 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^11, where c = zeta(11)/(11*zeta(2)) = 0.0552934... . - Amiram Eldar, Nov 10 2022
EXAMPLE
a(4) = 1025; a(4) = Sum_{d|4} d^10 * mu(d)^2 = 1^10*1 + 2^10*1 + 4^10*0 = 1025.
MATHEMATICA
a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^10); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)
Table[Total[Select[Divisors[n], SquareFreeQ]^10], {n, 25}] (* Harvey P. Dale, Nov 20 2022 *)
CROSSREFS
Cf. A008683 (mu), A013661, A013669.
Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), this sequence (k=10).
Sequence in context: A171385 A031742 A353943 * A321807 A351305 A017683
KEYWORD
nonn,mult
AUTHOR
Wesley Ivan Hurt, Feb 05 2022
STATUS
approved