login
A351271
Sum of the 8th powers of the squarefree divisors of n.
11
1, 257, 6562, 257, 390626, 1686434, 5764802, 257, 6562, 100390882, 214358882, 1686434, 815730722, 1481554114, 2563287812, 257, 6975757442, 1686434, 16983563042, 100390882, 37828630724, 55090232674, 78310985282, 1686434, 390626, 209642795554, 6562, 1481554114, 500246412962
OFFSET
1,2
COMMENTS
Inverse Möbius transform of n^8 * mu(n)^2. - Wesley Ivan Hurt, Jun 08 2023
LINKS
N. J. A. Sloane, Transforms.
FORMULA
a(n) = Sum_{d|n} d^8 * mu(d)^2.
Multiplicative with a(p^e) = 1 + p^8. - Amiram Eldar, Feb 06 2022
G.f.: Sum_{k>=1} mu(k)^2 * k^8 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^9, where c = zeta(9)/(9*zeta(2)) = 0.0676831... . - Amiram Eldar, Nov 10 2022
EXAMPLE
a(4) = 257; a(4) = Sum_{d|4} d^8 * mu(d)^2 = 1^8*1 + 2^8*1 + 4^8*0 = 257.
MATHEMATICA
a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^8); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)
CROSSREFS
Cf. A008683 (mu), A013661, A013667.
Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), this sequence (k=8), A351272 (k=9), A351273 (k=10).
Sequence in context: A209533 A125648 A353941 * A155468 A321564 A034682
KEYWORD
nonn,mult
AUTHOR
Wesley Ivan Hurt, Feb 05 2022
STATUS
approved