login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351275
a(n) = Sum_{k=0..n} (-2*k)^k * Stirling1(n,k).
3
1, -2, 18, -268, 5580, -149368, 4887368, -189010176, 8434813760, -426626153664, 24118046539968, -1507010218083456, 103135804627122816, -7672260068001952512, 616407170000568900864, -53192668792451354284032, 4906864974307552234844160
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: 1/(1 + LambertW( 2 * log(1+x) )), where LambertW() is the Lambert W-function.
a(n) ~ (-1)^n * exp(-1/2 - n + n*exp(-1)/2) * n^n / (sqrt(2) * (exp(exp(-1)/2) - 1)^(n+1/2)). - Vaclav Kotesovec, Feb 06 2022
PROG
(PARI) a(n) = sum(k=0, n, (-2*k)^k*stirling(n, k, 1));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(2*log(1+x)))))
CROSSREFS
Sequence in context: A351276 A138275 A292693 * A364400 A377503 A334242
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 05 2022
STATUS
approved