login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369718
The sum of unitary divisors of the smallest powerful number that is a multiple of n.
4
1, 5, 10, 5, 26, 50, 50, 9, 10, 130, 122, 50, 170, 250, 260, 17, 290, 50, 362, 130, 500, 610, 530, 90, 26, 850, 28, 250, 842, 1300, 962, 33, 1220, 1450, 1300, 50, 1370, 1810, 1700, 234, 1682, 2500, 1850, 610, 260, 2650, 2210, 170, 50, 130, 2900, 850, 2810, 140
OFFSET
1,2
LINKS
FORMULA
a(n) = A034448(A197863(n)).
Multiplicative with a(p) = p^2 + 1 and a(p^e) = p^e + 1 for e >= 2.
a(n) >= A034448(n), with equality if and only if n is powerful (A001694).
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 + 1/p^(s-2) - 1/p^(s-1) - 1/p^(2*s-3) + 1/p^(3*s-3) - 1/p^(3*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2) * zeta(3) * Product_{p prime} (1 - 2/p^2 + 1/p^4 + 1/p^6 - 2/p^7 + 1/p^8) = 0.73644353930922037459... .
MATHEMATICA
f[p_, e_] := If[e == 1, p^2 + 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1 + f[i, 1]^2, 1 + f[i, 1]^f[i, 2])); }
KEYWORD
nonn,easy,mult,look
AUTHOR
Amiram Eldar, Jan 30 2024
STATUS
approved