login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360560
Triangle read by rows. T(n, k) = (1/2) * C(n, k) * C(3*n - 1, n) for n > 0 and T(0, 0) = 1.
1
1, 1, 1, 5, 10, 5, 28, 84, 84, 28, 165, 660, 990, 660, 165, 1001, 5005, 10010, 10010, 5005, 1001, 6188, 37128, 92820, 123760, 92820, 37128, 6188, 38760, 271320, 813960, 1356600, 1356600, 813960, 271320, 38760, 245157, 1961256, 6864396, 13728792, 17160990, 13728792, 6864396, 1961256, 245157
OFFSET
0,4
FORMULA
G.f.: 1/2 + x*sqrt(3 + 3*y)*cot(arcsin((3*sqrt(3*x*(y + 1)))/2)/3)/ (2*sqrt(4*x - 27*x^2*(y + 1))).
EXAMPLE
Triangle begins:
1;
1, 1;
5, 10, 5;
28, 84, 84, 28;
165, 660, 990, 660, 165;
1001, 5005, 10010, 10010, 5005, 1001;
MAPLE
T := (n, k) -> ifelse(n = 0, 1, binomial(n, k)*binomial(3*n - 1, n)/2):
for n from 0 to 6 do seq(T(n, k), k = 0..n) od;
PROG
(Maxima)
T(n, m):=1/2*binomial(n+1, m)*binomial(3*n+2, n+1);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Feb 11 2023
STATUS
approved