login
A360559
Alternating partial sum of A006530.
0
1, -1, 2, 0, 5, 2, 9, 7, 10, 5, 16, 13, 26, 19, 24, 22, 39, 36, 55, 50, 57, 46, 69, 66, 71, 58, 61, 54, 83, 78, 109, 107, 118, 101, 108, 105, 142, 123, 136, 131, 172, 165, 208, 197, 202, 179, 226, 223, 230, 225, 242, 229, 282, 279, 290, 283, 302, 273, 332, 327, 388, 357, 364, 362
OFFSET
1,3
COMMENTS
a(2) = -1 is the only negative term of the sequence.
FORMULA
a(n) ~ (Pi^2*n^2*log(n/4))/(24*log(n/2)*log(n)) as n -> infinity.
EXAMPLE
a(4) = 0 since the greatest prime factors of {1,2,3,4} are {1,2,3,2} and the alternating sum 1-2+3-2 = 0.
MATHEMATICA
a[k_] := Sum[(-1)^(n + 1)*ResourceFunction["LargestPrimeFactor"][n], {n, 1, k}].
PROG
(PARI) a(n)=if(n>1, vecmax(factor(n)[, 1]), 1); s(k)=sum(n=1, k, a(n)*(-1)^(n+1))
CROSSREFS
Sequence in context: A300706 A351481 A014842 * A254708 A132816 A261068
KEYWORD
sign
AUTHOR
Luca Onnis, Feb 11 2023
STATUS
approved