OFFSET
1,1
COMMENTS
This sequence is well defined: as stated in Rao and Peng: 6 = 2*3 is a Zumkeller number, so, for any u, v >= 0, 2^(1+2*u) * 3^(1+2*v) is a Zumkeller number, also, if z is a Zumkeller number and m is coprime to z then z*m is also a Zumkeller number; if n = 2^u * 3^v * m with m coprime to 6, let u' be the least odd number >= u and v' be the least odd number >= v, then k = 2^(u'-u) * 3^(v'-v) is an integer (among {1, 2, 3, 6}), k*n is a Zumkeller number and a(n) <= k.
LINKS
Rémy Sigrist, Table of n, a(n) for n = 1..10000
K. P. S. Bhaskara Rao and Yuejian Peng, On Zumkeller Numbers, arXiv:0912.0052 [math.NT], 2009.
PROG
(PARI) a(n) = { forstep (m=n, oo, n, if (is(m), return (m))) } \\ see A083207 for the function "is"
CROSSREFS
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Feb 11 2023
STATUS
approved