login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261068
Decimal expansion of J_4 = Integral_{0..Pi/2} x^4/sin(x) dx.
2
2, 0, 5, 3, 1, 6, 0, 7, 3, 1, 4, 8, 0, 5, 9, 1, 6, 6, 8, 9, 5, 6, 5, 4, 1, 2, 9, 6, 0, 2, 6, 5, 1, 1, 3, 6, 6, 8, 5, 6, 5, 5, 8, 8, 4, 4, 5, 7, 2, 3, 9, 5, 6, 9, 4, 3, 8, 5, 1, 8, 8, 9, 2, 7, 6, 5, 2, 2, 9, 2, 3, 4, 2, 3, 7, 9, 1, 9, 1, 7, 7, 1, 7, 6, 7, 7, 6, 9, 8, 0, 7, 8, 9, 0, 1, 7, 4, 2, 6, 7, 3, 2
OFFSET
1,1
LINKS
J. M. Borwein, I. J. Zucker and J. Boersma, The evaluation of character Euler double sums, The Ramanujan Journal, April 2008, Volume 15, Issue 3, pp 377-405, see p. 13.
FORMULA
J_4 = Catalan*Pi^3 - 7*i*Pi^5/480 - 24*i*Pi*PolyLog(4, -i) + (93*zeta(5))/2.
Also equals Catalan*Pi^3 + (1/64)*(Pi*(PolyGamma(3, 3/4) - PolyGamma(3, 1/4)) + 2976*Zeta(5));
EXAMPLE
2.05316073148059166895654129602651136685655884457239569438518892765...
MATHEMATICA
J4 = Catalan*Pi^3 - 7*I*Pi^5/480 - 24*I*Pi*PolyLog[4, -I] + 93*Zeta[5]/2; RealDigits[J4 // Re, 10, 102] // First
CROSSREFS
Cf. A006752 (J_1 / 2 = Catalan's constant), A245073 (J_2), A225125 (J_3), A261069 (J_5).
Sequence in context: A360559 A254708 A132816 * A077453 A216982 A184854
KEYWORD
cons,nonn
AUTHOR
STATUS
approved