login
A225125
Decimal expansion of Integral_{x=0..Pi/2} x^3*cosec(x) dx.
3
1, 6, 9, 2, 9, 9, 2, 4, 6, 8, 4, 1, 3, 6, 0, 1, 2, 4, 4, 6, 7, 8, 0, 1, 3, 8, 3, 4, 8, 9, 8, 1, 0, 8, 7, 0, 8, 0, 7, 8, 6, 9, 8, 6, 7, 1, 5, 6, 8, 0, 7, 2, 3, 4, 9, 5, 6, 8, 8, 0, 1, 5, 7, 7, 8, 9, 4, 7, 6, 4, 3, 7, 2, 1, 3, 1, 9, 8, 7, 9, 8, 7, 2, 7, 9, 1, 8, 7, 3, 6, 3, 9, 6, 3, 5, 4, 4, 9, 4, 2
OFFSET
1,2
COMMENTS
The simpler Integral_{x=0..Pi/2} x*cosec(x) dx evaluates as 2*Catalan.
FORMULA
Equals 3*Catalan*Pi^2/2-1/128*(polygamma(3, 1/4)-polygamma(3, 3/4)).
EXAMPLE
1.6929924684136012446780138348981087080786986715680723495688...
MATHEMATICA
3*Catalan*Pi^2/2-1/128*(PolyGamma[3, 1/4]-PolyGamma[3, 3/4]); (* or *)
3*Catalan*Pi^2/2-3/64*(Zeta[4, 1/4]-Zeta[4, 3/4]) // RealDigits[#, 10, 100] & // First
PROG
(PARI) 3*Catalan*Pi^2/2-3/64*(zetahurwitz(4, 1/4)-zetahurwitz(4, 3/4)) \\ Charles R Greathouse IV, Jan 31 2018
CROSSREFS
Sequence in context: A010502 A254292 A188618 * A181852 A129938 A022698
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved