login
A022698
Expansion of Product_{m>=1} 1/(1 + m*q^m)^6.
2
1, -6, 9, -2, 42, -132, 95, -210, 840, -1394, 2442, -4374, 8589, -20862, 31812, -48758, 119856, -222228, 347038, -631992, 1220781, -2228812, 3730962, -6390948, 11861066, -21539358, 35874624, -59882714, 110055054
OFFSET
0,2
LINKS
FORMULA
G.f.: exp(-6*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 08 2018
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^-6, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Jul 19 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+n*q^n)^-6)) \\ G. C. Greubel, Jul 19 2018
CROSSREFS
Column k=6 of A297325.
Sequence in context: A225125 A181852 A129938 * A013707 A002162 A257945
KEYWORD
sign
STATUS
approved