The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257945 Decimal expansion of abs(i/(i + i/(i + i/...))) and abs(i/(1 + i/(1 + i/...))), i being the imaginary unit. 1
 6, 9, 3, 2, 0, 5, 4, 6, 4, 6, 2, 3, 7, 9, 7, 3, 2, 0, 4, 3, 4, 3, 6, 3, 7, 0, 4, 2, 2, 4, 1, 3, 8, 6, 8, 7, 9, 4, 1, 0, 2, 1, 7, 5, 0, 1, 6, 9, 2, 1, 9, 0, 1, 3, 3, 9, 9, 5, 5, 5, 8, 6, 7, 5, 2, 9, 5, 5, 8, 1, 4, 8, 8, 3, 1, 6, 6, 1, 0, 4, 3, 0, 2, 2, 3, 3, 6, 0, 6, 9, 1, 5, 2, 6, 8, 1, 8, 5, 8, 3, 5, 0, 5, 6, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Set v = A156590 and u = (A156548 - 1). Then the continued fractions evaluate to i/(i + i/(i + i/...)) = (sqrt(4*i - 1) - i)/2 = v + u*i and i/(1 + i/(1 + i/...)) = (sqrt(4*i + 1) - 1)/2 = u + v*i. They can be evaluated either explicitly or as limits of the convergent recursive mappings z -> i/(i + z) and z -> i/(1 + z), respectively, starting, for example, with z = 0. An algebraic integer of degree 8. - Charles R Greathouse IV, Jun 02 2015 LINKS Stanislav Sykora, Table of n, a(n) for n = 0..2000 FORMULA Equals sqrt(1 + sqrt(17) - sqrt(2*(1 + sqrt(17))))/2. EXAMPLE 0.69320546462379732043436370422413868794102175016921901339955586752... MATHEMATICA RealDigits[Sqrt[1 + Sqrt[17] - Sqrt[2*(1 + Sqrt[17])]]/2, 10, 105][[1]] (* Vaclav Kotesovec, Jun 02 2015 *) PROG (PARI) sqrt(1+sqrt(17)-sqrt(2*(1+sqrt(17))))/2 (PARI) polrootsreal(x^8-x^6-2*x^4-x^2+1)[3] \\ Charles R Greathouse IV, Jun 02 2015 CROSSREFS Cf. A156548, A156590. Sequence in context: A022698 A013707 A002162 * A271526 A072365 A239068 Adjacent sequences:  A257942 A257943 A257944 * A257946 A257947 A257948 KEYWORD nonn,cons AUTHOR Stanislav Sykora, May 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 09:15 EDT 2021. Contains 347664 sequences. (Running on oeis4.)