login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A257944
Lexicographically earliest sequence of positive integers such that the terms and their absolute first differences are all distinct and no term is the sum of two distinct terms.
5
1, 3, 7, 12, 18, 26, 16, 31, 20, 37, 50, 22, 41, 64, 35, 56, 83, 39, 69, 45, 54, 79, 111, 58, 92, 130, 60, 96, 136, 73, 115, 163, 75, 121, 168, 77, 134, 193, 98, 149, 182, 102, 157, 206, 117, 178, 244, 138, 210, 277, 140, 214, 282, 153, 229, 307, 155, 220, 263
OFFSET
1,2
COMMENTS
The sequence of absolute first differences begins: 2, 4, 5, 6, 8, 10, 15, 11, 17, 13, 28, 19, 23, 29, 21, 27, 44, 30, 24, 9, 25, 32, 53, ... .
LINKS
E. Angelini et al., 0-additive and first differences and follow-up messages on the SeqFan list, May 13 2015
MAPLE
s:= proc() false end: b:= proc() false end:
a:= proc(n) option remember; local i, k, ok;
if n=1 then b(1):= true; 1
else for k do if b(k) or s(k) or (t-> b(t) or t=k)(
abs(a(n-1)-k)) then next fi; ok:=true;
for i to n-1 while ok do if b(k+a(i))
then ok:=false fi od; if ok then break fi
od;
for i to n-1 do s(a(i)+k):= true od;
b(k), b(abs(a(n-1)-k)):= true$2; k
fi
end:
seq(a(n), n=1..101);
MATHEMATICA
s[_] = False; b[_] = False;
a[n_] := a[n] = Module[{i, k, ok}, If[n == 1, b[1] = True; 1,
For[k = 1, True, k++, If[b[k] || s[k] || Function[t, b[t] ||
t == k][Abs[a[n-1] - k]], Continue[]]; ok = True;
For[i = 1, i <= n-1 && ok, i++, If[b[k + a[i]],
ok = False]]; If[ok, Break[]]];
For[i = 1, i <= n-1, i++, s[a[i] + k] = True];
{b[k], b[Abs[a[n-1] - k]]} = {True, True}; k]];
Table[a[n], {n, 1, 101}] (* Jean-François Alcover, Jul 16 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Eric Angelini and Alois P. Heinz, May 13 2015
STATUS
approved