login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A271526
Decimal expansion of the negated imaginary part of the derivative of the Dirichlet function eta(z), at z=i, the imaginary unit.
5
6, 9, 3, 2, 8, 2, 6, 0, 3, 9, 0, 3, 5, 7, 4, 1, 0, 1, 6, 4, 2, 4, 3, 9, 0, 2, 7, 5, 8, 3, 8, 8, 4, 6, 4, 1, 9, 2, 1, 9, 7, 3, 1, 3, 7, 7, 6, 4, 5, 8, 2, 1, 0, 2, 6, 0, 9, 6, 5, 5, 1, 0, 6, 5, 5, 9, 5, 8, 9, 4, 2, 0, 6, 6, 9, 2, 6, 2, 3, 7, 7, 8, 4, 4, 1, 6, 6, 8, 9, 6, 5, 8, 7, 3, 0, 6, 0, 4, 7, 5, 0, 7, 1, 0, 6
OFFSET
-1,1
COMMENTS
The corresponding real part of eta'(i) is in A271525.
LINKS
Eric Weisstein's World of Mathematics, Dirichlet Eta Function
FORMULA
Equals -imag(eta'(i)).
EXAMPLE
-0.06932826039035741016424390275838846419219731377645821026096551065...
MATHEMATICA
RealDigits[Im[2^(1-I)*Log[2]*Zeta[I] + (1 - 2^(1-I))*Zeta'[I]], 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)
RealDigits[Im[DirichletEta'[I]], 10, 110][[1]] (* Eric W. Weisstein, Jan 06 2024 *)
PROG
(PARI) \\ Derivative of Dirichlet eta function (fails for z=1):
derdireta(z)=2^(1-z)*log(2)*zeta(z)+(1-2^(1-z))*zeta'(z);
imag(derdireta(I)) \\ Evaluation
CROSSREFS
Cf. A271523 (real(eta(i))), A271524 (imag(eta(i))), A271525(real(eta'(i))).
Sequence in context: A013707 A002162 A257945 * A072365 A239068 A259833
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, Apr 09 2016
STATUS
approved