OFFSET
1,3
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9 Polya's random walk constants, p. 326.
LINKS
Eric Weisstein's MathWorld, Polya's Random Walk Constants
J. Wimp and D. Zeilberger, How likely is Polya's drunkard to stay in x >= y >= z ? J. Statistical Physics 57, 1129-1135 (1989).
FORMULA
Sum_{n>=0} CatalanNumber(n) * 3F2(1/2,-n-1,-n; 2,2; 4) / 6^(2n), where 3F2 is the hypergeometric function.
EXAMPLE
m_3 = 1.069341120606886682827757166859559229789965025835170715...
Return probability is p_3 = 1 - 1/m_3 = 0.064844715377...
MAPLE
evalf(Sum((2*n)!*hypergeom([1/2, -n-1, -n], [2, 2], 4)/(n!*(n+1)!*6^(2*n)), n=0..infinity), 120); # Vaclav Kotesovec, May 14 2016
MATHEMATICA
Sum[CatalanNumber[n]*HypergeometricPFQ[{1/2, -n - 1, -n}, {2, 2}, 4]/ 6^(2*n), {n, 0, 2*10^4}] // N // RealDigits // First (* Jul 06 2015, updated May 14 2016 *)
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Jul 06 2015
EXTENSIONS
More terms from Vaclav Kotesovec, May 14 2016
STATUS
approved