login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259833
Decimal expansion of m_3, the expected number of returns to the origin in a three-dimensional random walk restricted to the region x >= y >= z.
1
1, 0, 6, 9, 3, 4, 1, 1, 2, 0, 6, 0, 6, 8, 8, 6, 6, 8, 2, 8, 2, 7, 7, 5, 7, 1, 6, 6, 8, 5, 9, 5, 5, 9, 2, 2, 9, 7, 8, 9, 9, 6, 5, 0, 2, 5, 8, 3, 5, 1, 7, 0, 7, 1, 5, 0, 8, 6, 7, 5, 4, 5, 9, 1, 4, 8, 4, 6, 2, 7, 1, 8, 9, 0, 4, 4, 5, 5, 9, 8, 5, 2, 7, 5, 4, 5, 2, 2, 3, 5, 8, 8, 7, 7, 5, 9, 4, 7, 6, 2, 2, 9, 8, 5, 3
OFFSET
1,3
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9 Polya's random walk constants, p. 326.
LINKS
Eric Weisstein's MathWorld, Polya's Random Walk Constants
J. Wimp and D. Zeilberger, How likely is Polya's drunkard to stay in x >= y >= z ? J. Statistical Physics 57, 1129-1135 (1989).
FORMULA
Sum_{n>=0} CatalanNumber(n) * 3F2(1/2,-n-1,-n; 2,2; 4) / 6^(2n), where 3F2 is the hypergeometric function.
EXAMPLE
m_3 = 1.069341120606886682827757166859559229789965025835170715...
Return probability is p_3 = 1 - 1/m_3 = 0.064844715377...
MAPLE
evalf(Sum((2*n)!*hypergeom([1/2, -n-1, -n], [2, 2], 4)/(n!*(n+1)!*6^(2*n)), n=0..infinity), 120); # Vaclav Kotesovec, May 14 2016
MATHEMATICA
Sum[CatalanNumber[n]*HypergeometricPFQ[{1/2, -n - 1, -n}, {2, 2}, 4]/ 6^(2*n), {n, 0, 2*10^4}] // N // RealDigits // First (* Jul 06 2015, updated May 14 2016 *)
CROSSREFS
Sequence in context: A271526 A072365 A239068 * A367730 A085138 A346176
KEYWORD
nonn,cons,walk
AUTHOR
EXTENSIONS
More terms from Vaclav Kotesovec, May 14 2016
STATUS
approved