login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259832 Numbers n with the property that it is possible to write the base 2 expansion of n as concat(a_2,b_2), with a_2>0 and b_2>0 such that, converting a_2 and b_2 to base 10 as a and b, we have (sigma(a)-a)*(sigma(b)-b) = sigma(n). 4
7708, 9020, 86934, 92128, 120228, 325180, 372000, 491630, 565724, 739032, 862780, 1120024, 1344090, 1419304, 1440858, 1678232, 2752626, 2980515, 3684344, 4154418, 4860476, 7539610, 7565257, 9527064, 11025372, 12277728, 17002336, 20256672, 22528536, 24597984 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(62) > 10^8. - Hiroaki Yamanouchi, Sep 24 2015

LINKS

Hiroaki Yamanouchi, Table of n, a(n) for n = 1..61

EXAMPLE

7708 in base 2 is 1111000011100. If we take 1111000011100 = concat(11110000, 11100) then 11110000 and 11100 converted to base 10 are 240 and 28. Finally (sigma(240) - 240)*(sigma(28) - 28) = (744 - 240)*(56 - 28) = 504 * 28 = 14112 = sigma(7708); 9020 in base 2 is 10001100111100. If we take 10001100111100= concat(10001100, 111100) then 110 and 01111110000 converted to base 10 are 140 and 60. Finally (sigma(140) - 140)*(sigma(60) - 60) = (336 - 140)*(168 - 60)= 196 * 108 = 21160 = sigma(9020).

MAPLE

with(numtheory): P:=proc(q) local a, b, c, k, n;

for n from 1 to q do c:=convert(n, binary, decimal);

for k from 1 to ilog10(c) do

a:=convert(trunc(c/10^k), decimal, binary);

b:=convert((c mod 10^k), decimal, binary);

if a*b>0 then if (sigma(a)-a)*(sigma(b)-b)=sigma(n) then print(n);

break; fi; fi; od; od; end: P(10^9);

MATHEMATICA

f[n_] := Block[{d = IntegerDigits[n, 2], len = IntegerLength[n, 2], k}, ReplaceAll[Reap[Do[k = {FromDigits[Take[d, i], 2], FromDigits[Take[d, -(len - i)], 2]}; If[! MemberQ[k, 0], Sow@ k], {i, 1, len - 1}]], {} -> {1}][[-1, 1]]]; Select[Range@ 125000, MemberQ[(DivisorSigma[1, #1] - #1) (DivisorSigma[1, #2] - #2) & @@@ f@ #, DivisorSigma[1, #]] &] (* Michael De Vlieger, Jul 07 2015 *)

PROG

(Python)

from sympy import divisor_sigma

A259832_list= []

for n in range(2, 10**6):

....s, k = format(n, '0b'), divisor_sigma(n)

....for l in range(1, len(s)):

........n1, n2 = int(s[:l], 2), int(s[l:], 2)

........if n2 > 0 and k == (divisor_sigma(n1)-n1)*(divisor_sigma(n2)-n2):

............A259832_list.append(n)

............break # Chai Wah Wu, Jul 17 2015

CROSSREFS

Cf. A000203, A244079, A258813, A258843, A259831.

Sequence in context: A183974 A234223 A253923 * A202597 A092004 A278019

Adjacent sequences:  A259829 A259830 A259831 * A259833 A259834 A259835

KEYWORD

nonn,base

AUTHOR

Paolo P. Lava, Jul 06 2015

EXTENSIONS

a(16)-a(21) from Chai Wah Wu, Jul 17 2015

a(22)-a(30) from Hiroaki Yamanouchi, Sep 24 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 07:21 EST 2021. Contains 349627 sequences. (Running on oeis4.)