login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258813
Numbers n with the property that it is possible to write the base 2 expansion of n as concat(a_2,b_2), with a_2>0 and b_2>0 such that, converting a_2 and b_2 to base 10 as a and b, we have sigma(a) + sigma (b) = sigma(n) - n.
9
9, 15, 27, 39, 51, 77, 143, 207, 329, 377, 473, 611, 903, 1241, 1243, 1273, 1437, 1591, 2117, 2303, 2975, 4189, 8401, 8657, 11993, 13849, 15611, 16771, 18239, 18599, 19359, 25331, 28877, 37291, 41747, 41807, 61549, 67037, 72601, 82169, 83411, 83711, 87449, 99329
OFFSET
1,1
LINKS
EXAMPLE
9 in base 2 is 1001. If we take 1001 = concat(10,01) then 10 and 01 converted to base 10 are 2 and 1. Finally sigma(2) + sigma(1) = sigma(9) - 9 = 4.
180953 in base 2 is 101100001011011001. If we take 101100001011011001 = concat(101100001011,011001) then 101100001011 and 011001 converted to base 10 are 2827 and 25. Finally sigma(2827) + sigma(25) = sigma(180953) - 180953 = 3127.
MAPLE
with(numtheory): P:=proc(q) local a, b, c, j, k, n;
for n from 1 to q do c:=convert(n, binary, decimal);
j:=0; for k from 1 to ilog10(c) do
a:=convert(trunc(c/10^k), decimal, binary);
b:=convert((c mod 10^k), decimal, binary);
if a*b>0 then if sigma(a)+sigma(b)=sigma(n)-n then print(n);
break; fi; fi; od; od; end: P(10^9);
PROG
(PARI) isok(n) = {b = binary(n); if (#b > 1, for (k=1, #b-1, vba = Vecrev(vector(k, i, b[i])); vbb = Vecrev(vector(#b-k, i, b[k+i])); da = sum(i=1, #vba, vba[i]*2^(i-1)); db = sum(i=1, #vbb, vbb[i]*2^(i-1)); if (da && db && (sigma(da)+sigma(db) == sigma(n)-n), return(1)); ); ); } \\ Michel Marcus, Jun 13 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Jun 11 2015
STATUS
approved