|
|
A253825
|
|
Numbers n = concat(s,t) such that n = (sigma(s)-s) * (sigma(t)-t), where sigma(x)-x is the sum of the aliquot parts of x.
|
|
9
|
|
|
6396, 20680, 124416, 567816, 1719480, 7593432, 10538040, 36382320, 107277800, 123251968, 166601760, 327844840, 933363000, 1286859804, 2524125184, 3398418000, 4561432920, 4566915540, 4911440776, 7097433536, 16913792670, 20565608940, 21099997800, 27639552000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
EXAMPLE
|
6396 = concat(63,96) -> sigma(63)-63 = 41, sigma(96)-96 = 156 and 41*156 = 6396.
20680 = concat(20,680) -> sigma(20)-20 = 22, sigma(680)-680 = 940 and 22*940 = 20680.
124416 = concat(12,4416) -> sigma(12)-12 = 16, sigma(4416)-4416 = 7776 and 16*7776 = 124416.
567816 = concat(567,816) -> sigma(567)-567 = 410, sigma(816)-816 = 1416 and 401*1416 = 567816.
|
|
MAPLE
|
with(numtheory): P:=proc(q) local s, t, k, n;
for n from 1 to q do for k from 1 to ilog10(n) do s:=n mod 10^k; t:=trunc(n/10^k); if s*t>0 then if (sigma(s)-s)*(sigma(t)-t)=n
then print(n); break; fi; fi; od; od; end: P(10^6);
|
|
MATHEMATICA
|
fQ[n_] := Block[{idn = IntegerDigits@ n, lng = Floor@ Log10@ n}, MemberQ[ Table[s = FromDigits@ Take[idn, {1, i}]; t = FromDigits@ Take[idn, {i + 1, lng + 1}]; (DivisorSigma[1, s] - s) (DivisorSigma[1, t] - t), {i, lng}], n]]; k = 1; lst = {}; While[k < 100000001, If[fQ@ k, AppendTo[lst, k]; Print@ k]; k++] (* Robert G. Wilson v, Jan 26 2015 *)
|
|
PROG
|
(PARI) isok(n) = {len = #Str(n); for (k=1, len-1, na = n\10^k; nb = n % 10^k; if (nb && (n == (sigma(na)-na)*(sigma(nb)-nb)), return (1)); ); } \\ Michel Marcus, Jan 15 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|