OFFSET
1,2
COMMENTS
Also positive integers y in the solutions to 6*x^2 - 3*y^2 - 4*x + 3*y - 2 = 0, the corresponding values of x being A253821.
LINKS
Colin Barker, Table of n, a(n) for n = 1..653
Index entries for linear recurrences with constant coefficients, signature (1,1154,-1154,-1,1).
FORMULA
a(n) = a(n-1)+1154*a(n-2)-1154*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(255*x^3+577*x^2-255*x-1) / ((x-1)*(x^2-34*x+1)*(x^2+34*x+1)).
EXAMPLE
256 is in the sequence because the 256th centered triangular number is 97921, which is also the 181st octagonal number.
MATHEMATICA
LinearRecurrence[{1, 1154, -1154, -1, 1}, {1, 256, 833, 294848, 960705}, 20] (* Harvey P. Dale, Jul 19 2019 *)
PROG
(PARI) Vec(x*(255*x^3+577*x^2-255*x-1)/((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jan 14 2015
STATUS
approved