%I
%S 1,256,833,294848,960705,340253760,1108652161,392652543616,
%T 1279383632513,453120695078528,1476407603267265,522900889468077120,
%U 1703773094786790721,603427173325465917376,1966152674976353224193,696354435116698200574208,2268938483149616833927425
%N Indices of centered triangular numbers (A005448) which are also octagonal numbers (A000567).
%C Also positive integers y in the solutions to 6*x^2 - 3*y^2 - 4*x + 3*y - 2 = 0, the corresponding values of x being A253821.
%H Colin Barker, <a href="/A253822/b253822.txt">Table of n, a(n) for n = 1..653</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1154,-1154,-1,1).
%F a(n) = a(n-1)+1154*a(n-2)-1154*a(n-3)-a(n-4)+a(n-5).
%F G.f.: x*(255*x^3+577*x^2-255*x-1) / ((x-1)*(x^2-34*x+1)*(x^2+34*x+1)).
%e 256 is in the sequence because the 256th centered triangular number is 97921, which is also the 181st octagonal number.
%t LinearRecurrence[{1,1154,-1154,-1,1},{1,256,833,294848,960705},20] (* _Harvey P. Dale_, Jul 19 2019 *)
%o (PARI) Vec(x*(255*x^3+577*x^2-255*x-1)/((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^100))
%Y Cf. A000567, A005448, A253821, A253823.
%K nonn,easy
%O 1,2
%A _Colin Barker_, Jan 14 2015
|