login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209381
1/4 the number of (n+1) X 8 0..2 arrays with every 2 X 2 subblock having distinct edge sums.
1
256, 882, 1792, 8612, 18176, 114056, 242176, 1784720, 3777536, 30197792, 63711232, 528982592, 1113952256, 9408350336, 19793944576, 168456608000, 354255650816, 3025121034752, 6360407375872, 54395601462272, 114358131163136
OFFSET
1,1
COMMENTS
Column 7 of A209382.
LINKS
FORMULA
Empirical: a(n) = 32*a(n-2) - 308*a(n-4) + 1072*a(n-6) - 1152*a(n-8).
Empirical g.f.: 2*x*(128 + 441*x - 3200*x^2 - 9806*x^3 + 19840*x^4 + 55064*x^5 - 30976*x^6 - 79040*x^7) / ((1 - 2*x)*(1 + 2*x)*(1 - 2*x^2)*(1 - 8*x^2)*(1 - 18*x^2)). - Colin Barker, Jul 10 2018
EXAMPLE
Some solutions for n=4:
..0..1..0..1..0..2..0..1....2..2..0..2..0..2..2..2....2..1..2..0..0..0..2..0
..2..2..2..2..0..1..0..2....0..1..0..1..0..1..0..1....2..0..2..1..2..1..2..1
..0..1..0..1..0..2..0..1....2..2..2..2..2..2..2..2....2..1..2..0..2..0..2..0
..2..2..0..2..0..1..0..2....0..1..0..1..0..1..0..1....2..0..2..1..2..1..2..1
..0..1..0..1..0..2..0..1....0..2..2..2..2..2..0..2....2..1..2..0..2..0..2..0
CROSSREFS
Cf. A209382.
Sequence in context: A188248 A253822 A258733 * A236987 A236980 A224975
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 07 2012
STATUS
approved