|
|
A209379
|
|
1/4 the number of (n+1) X 6 0..2 arrays with every 2 X 2 subblock having distinct edge sums.
|
|
1
|
|
|
64, 170, 320, 1076, 2176, 8648, 18176, 78800, 168448, 758816, 1633280, 7474496, 16132096, 74296448, 160526336, 741182720, 1602101248, 7404724736, 16008396800, 74018886656, 160033570816, 740075522048, 1600134250496, 7400302039040
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Column 5 of A209382.
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 16*a(n-2) - 68*a(n-4) + 80*a(n-6).
Empirical g.f.: 2*x*(32 + 85*x - 352*x^2 - 822*x^3 + 704*x^4 + 1496*x^5) / ((1 - 2*x)*(1 + 2*x)*(1 - 2*x^2)*(1 - 10*x^2)). - Colin Barker, Jul 09 2018
|
|
EXAMPLE
|
Some solutions for n=4:
..2..2..0..1..0..0....0..2..0..0..0..2....1..2..2..2..2..2....2..1..2..2..0..1
..0..1..0..2..2..1....1..2..1..2..1..2....0..0..1..0..1..0....2..0..0..1..0..2
..2..2..0..1..0..0....0..2..0..2..0..2....1..2..2..0..2..0....2..1..2..2..0..1
..0..1..0..2..2..1....0..1..0..1..0..1....0..0..1..0..1..0....2..0..0..1..0..2
..0..2..0..1..0..0....0..2..0..2..2..2....1..2..2..2..2..2....2..1..2..2..0..1
|
|
CROSSREFS
|
Cf. A209382.
Sequence in context: A044777 A251077 A228666 * A203448 A078093 A209371
Adjacent sequences: A209376 A209377 A209378 * A209380 A209381 A209382
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Mar 07 2012
|
|
STATUS
|
approved
|
|
|
|