

A258844


Numbers n with the property that it is possible to write the base 2 expansion of n as concat(a_2,b_2), with a_2>0 and b_2>0 such that, converting a_2 and b_2 to base 10 as a and b, we have (a+b)^2 = n.


4



9, 36, 49, 100, 225, 784, 961, 1296, 2601, 3969, 7225, 8281, 14400, 16129, 18496, 21609, 29241, 34969, 42025, 65025, 116964, 123201, 133225, 246016, 261121, 278784, 465124, 508369, 672400, 700569, 828100, 1046529, 1368900, 1590121, 1782225, 4064256, 4190209, 4326400
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Obviously all terms are squares.
The terms that have b=1 are: 9, 49, 225, 961, 3969, 16129, 65025, ...; see A060867 ((2^n1)^2).  Michel Marcus, Jun 13 2015


LINKS

Table of n, a(n) for n=1..38.


EXAMPLE

9 in base 2 is 1001. If we take 1001 = concat(10,01) then 10 and 01 converted to base 10 are 2 and 1. Finally (2 + 1)^2 = 3^2 = 9;
36 in base 2 is 100100. If we take 100100 = concat(10,0100) then 10 and 0100 converted to base 10 are 2 and 4. Finally (2 + 4)^2 = 6^2 = 36.


MAPLE

with(numtheory): P:=proc(q) local a, b, c, k, n;
for n from 1 to q do c:=convert(n, binary, decimal);
for k from 1 to ilog10(c) do
a:=convert(trunc(c/10^k), decimal, binary);
b:=convert((c mod 10^k), decimal, binary);
if a*b>0 then if (a+b)^2=n then print(n); break;
fi; fi; od; od; end: P(10^6);


PROG

(PARI) isok(n) = {b = binary(n); if (#b > 1, for (k=1, #b1, vba = Vecrev(vector(k, i, b[i])); vbb = Vecrev(vector(#bk, i, b[k+i])); da = sum(i=1, #vba, vba[i]*2^(i1)); db = sum(i=1, #vbb, vbb[i]*2^(i1)); if ((da+ db)^2 == n, return(1)); ); ); } \\ Michel Marcus, Jun 13 2015


CROSSREFS

Cf. A258813, A258843.
Sequence in context: A319958 A329808 A169580 * A294952 A068810 A077115
Adjacent sequences: A258841 A258842 A258843 * A258845 A258846 A258847


KEYWORD

nonn,base


AUTHOR

Paolo P. Lava, Jun 12 2015


STATUS

approved



