The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259834 Number of permutations of [n] with no fixed points where the maximal displacement of an element equals n-1. 5
 0, 0, 1, 2, 5, 20, 97, 574, 3973, 31520, 281825, 2803418, 30704101, 367114252, 4757800705, 66432995030, 994204132517, 15875195019224, 269397248811073, 4841453414347570, 91856764780324165, 1834779993945449348, 38485629141294791201, 845788826477292504302 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n) counts permutations p of [n] such that p(i) <> i and (p(1) = n or p(n) = 1). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..450 FORMULA a(n) = ((2*n^2-11*n+13)*a(n-1) + (2*n-5)*(n-3)*a(n-2))/(2*n-7) for n > 2. a(n) = (n-2)! * [x^(n-2)] exp(-x)*(x+1)/(x-1)^2 for n > 1. a(n) ~ 2 * (n-1)! / exp(1). - Vaclav Kotesovec, Jul 07 2015 a(n) = y(n,n), n > 1, where y(m+1,n) = (n-m)*y(m,n) + (n-m)*y(m-1,n), with y(0,n)=0, y(1,n)=y(2,n)=1 for all n. - Benedict W. J. Irwin, Nov 03 2016 From Peter Luschny, Oct 05 2017: (Start) a(n) = (Gamma(n-1, -1) + 2*Gamma(n, -1)) / e for n >= 2. a(n) = A000166(n-2) + 2*A000166(n-1) for n >= 2. a(n) = (2*n-1)*A000166(n-2) - 2*(-1)^n for n >= 2. a(n) = A000255(n-2) + A000166(n-1) for n >= 2. a(n+2) = (-1)^n*(-hypergeom([1,1-n], [], 1) + hypergeom([2,2-n], [], 1)) = A292898(2, n) for n >= 0. a(n) ~ 2*sqrt(2*Pi)*exp(-n-1)*n^(n-1/2). (End) a(n+2) = A306455(n) + n! for n >= 0. - Alois P. Heinz, Feb 16 2019 EXAMPLE a(2) = 1: 21. a(3) = 2: 231, 312. a(4) = 5: 2341, 3421, 4123, 4312, 4321. MAPLE a:= proc(n) option remember; `if`(n<3, [0, 0, 1][n+1],      ((2*n^2-11*n+13)*a(n-1) +(2*n-5)*(n-3)*a(n-2))/(2*n-7))     end: seq(a(n), n=0..30); MATHEMATICA Join[{0, 0}, Table[DifferenceRoot[Function[{y, m}, {y[1 + m] == (n - m)*y[m] + (n - m) y[m - 1], y[0] == 0, y[1] == 1, y[2] == 1}]][n], {n, 2, 30}]] (* Benedict W. J. Irwin, Nov 03 2016 *) Table[If[n<2, 0, Subfactorial[n-2]+2*Subfactorial[n-1]], {n, 0, 23}] (* Peter Luschny, Oct 04 2017 *) PROG (Python) def A259834_list(len):     L, u, x, y = [0], 1, 0, 0     for n in range(len):         y, x, u = x, x*n + u, -u         L.append(y + 2*x)     L[1] = 0     return L print(A259834_list(23)) # Peter Luschny, Oct 04 2017 CROSSREFS A diagonal of A259784. Cf. A000142, A000166, A000255, A292897, A292898, A306455. Sequence in context: A347071 A214816 A020005 * A074415 A020001 A039909 Adjacent sequences:  A259831 A259832 A259833 * A259835 A259836 A259837 KEYWORD nonn,easy AUTHOR Alois P. Heinz, Jul 06 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 01:24 EST 2021. Contains 349617 sequences. (Running on oeis4.)