OFFSET
0,2
COMMENTS
All terms are multiple of 6.
Converges in a 10-adic sense to ...925925925926.
A transformation of the Wonderful Demlo numbers (A002477).
More generally, the ordinary generating function for the transformation of the Wonderful Demlo numbers, is k*x*(1 + 10*x)/(1 - 111*x + 1110*x^2 - 1000*x^3).
LINKS
Ilya Gutkovskiy, Transformation of the Wonderful Demlo numbers
Eric Weisstein's World of Mathematics, Demlo Number
Eric Weisstein's World of Mathematics, Repunit
Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
FORMULA
O.g.f.: 6*x*(1 + 10*x)/(1 - 111*x + 1110*x^2 - 1000*x^3).
E.g.f.: 2 (exp(x) - 2*exp(10*x) + exp(100*x))/27.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3).
Sum_{n>=1} 1/a(n) = 0.1680577405662077350849154881928636039793563...
Lim_{n -> infinity} a(n + 1)/a(n) = 100.
EXAMPLE
n=1: 6 = 2 * 3;
n=2: 726 = 22 * 33;
n=3: 73926 = 222 * 333;
n=4: 7405926 = 2222 * 3333;
n=5: 740725926 = 22222 * 33333;
n=6: 74073925926 = 222222 * 333333;
n=7: 7407405925926 = 2222222 * 3333333;
n=8: 740740725925926 = 22222222 * 33333333;
n=9: 74074073925925926 = 222222222 * 333333333, etc.
MATHEMATICA
Table[2 ((10^n - 1)^2/27), {n, 0, 15}]
LinearRecurrence[{111, -1110, 1000}, {0, 6, 726}, 16]
PROG
(PARI) x='x+O('x^99); concat(0, Vec(6*x*(1+10*x)/(1-111*x+1110*x^2-1000*x^3))) \\ Altug Alkan, Apr 09 2016
(Python)
for n in range(0, 10**1):print((int)((2*(10**n-1)**2)/27))
# Soumil Mandal, Apr 10 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Apr 09 2016
STATUS
approved