login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271527 a(n) = 1000^n + 1. 1
2, 1001, 1000001, 1000000001, 1000000000001, 1000000000000001, 1000000000000000001, 1000000000000000000001, 1000000000000000000000001, 1000000000000000000000000001, 1000000000000000000000000000001, 1000000000000000000000000000000001 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

All terms in this sequence are palindromes (A002113).

Also, A062395 written in base 2 (see example).

a(n) minus one gives the number of nodes at n-th level of a 1000-ary tree.

More generally, the ordinary generating function for sequences of the form k^n + m, is (1 + m - (1 + k*m)*x)/((1 - x)*(1 - k*x)), and the exponential generating function is exp(k*x) + m*exp(x).

LINKS

Table of n, a(n) for n=0..11.

Ilya Gutkovskiy, Examples of the ordinary generating function for the sequences of the form k^n + m

Index entries for linear recurrences with constant coefficients, signature (1001,-1000)

FORMULA

G.f.: (2 - 1001*x)/((1 - x)*(1 - 1000*x)).

E.g.f.: exp(1000*x) + exp(x).

a(n) = 1001*a(n-1) - 1000*a(n-2).

a(n) = A060365(n) + 1.

a(n) = A000533(3n), n>0.

a(n) = A007088(A062395(n)).

A007953(a(n)) = A007395(n).

A000035(a(n)) = A057427(n).

Sum_{n>=0} 1/a(n) = 0.501000001999002...

Lim_{n->infinity} a(n + 1)/a(n) = 1000.

EXAMPLE

a(n), n>0, is the binary representation of A062395(n)

n  ------------------------------------------

0  2........................................2

1  1001.....................................9

2  1000001.................................65

3  1000000001.............................513

4  1000000000001.........................4097

5  1000000000000001.....................32769

6  1000000000000000001.................262145

7  1000000000000000000001.............2097153

8  1000000000000000000000001.........16777217

9  1000000000000000000000000001.....134217729

MATHEMATICA

Table[1000^n + 1, {n, 0, 11}]

LinearRecurrence[{1001, -1000}, {2, 1001}, 12]

PROG

(PARI) x='x+O('x^99); Vec((2-1001*x)/((1-x)*(1-1000*x))) \\ Altug Alkan, Apr 09 2016

(Python)

for n in xrange(0, 10**4):print(1000**n+1)

# Soumil Mandal, Apr 10 2016

CROSSREFS

Cf. A000035, A000533, A007088, A007395, A007953, A057427, A060365, A062395, A152756.

Sequence in context: A079233 A194191 A190579 * A214543 A258661 A024033

Adjacent sequences:  A271524 A271525 A271526 * A271528 A271529 A271530

KEYWORD

nonn,base,easy

AUTHOR

Ilya Gutkovskiy, Apr 09 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 19:36 EDT 2018. Contains 316293 sequences. (Running on oeis4.)