login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022696
Expansion of Product_{m>=1} (1 + m*q^m)^-4.
2
1, -4, 2, 0, 27, -36, 14, -104, 209, -392, 670, -728, 2278, -4444, 4808, -9800, 21750, -35604, 51906, -91120, 176285, -290444, 455168, -741336, 1372544, -2419348, 3490310, -5765744, 10788815, -17086420, 26221946, -44374160
OFFSET
0,2
LINKS
FORMULA
G.f.: exp(-4*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 08 2018
MAPLE
N:= 100: # to get a(0)..a(N)
P:= mul((1+m*q^m)^(-4), m=1..N):
S:=series(P, q, N+1):
[seq(coeff(S, q, j), j=0..N)]; # Robert Israel, Jan 23 2018
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^-4, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Jul 19 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+n*q^n)^-4)) \\ G. C. Greubel, Jul 19 2018
CROSSREFS
Column k=4 of A297325.
Sequence in context: A334778 A111549 A279411 * A371076 A019155 A107724
KEYWORD
sign
STATUS
approved