login
A022696
Expansion of Product_{m>=1} (1 + m*q^m)^-4.
2
1, -4, 2, 0, 27, -36, 14, -104, 209, -392, 670, -728, 2278, -4444, 4808, -9800, 21750, -35604, 51906, -91120, 176285, -290444, 455168, -741336, 1372544, -2419348, 3490310, -5765744, 10788815, -17086420, 26221946, -44374160
OFFSET
0,2
LINKS
FORMULA
G.f.: exp(-4*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 08 2018
MAPLE
N:= 100: # to get a(0)..a(N)
P:= mul((1+m*q^m)^(-4), m=1..N):
S:=series(P, q, N+1):
[seq(coeff(S, q, j), j=0..N)]; # Robert Israel, Jan 23 2018
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^-4, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Jul 19 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+n*q^n)^-4)) \\ G. C. Greubel, Jul 19 2018
CROSSREFS
Column k=4 of A297325.
Sequence in context: A334778 A111549 A279411 * A371076 A019155 A107724
KEYWORD
sign
STATUS
approved