login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371076
Triangle read by rows: T(n, k) = 3^n*Sum_{j=0..k} (-1)^(k - j)*binomial(k, j) * Pochhammer(j/3, n).
3
1, 0, 1, 0, 4, 2, 0, 28, 24, 6, 0, 280, 320, 144, 24, 0, 3640, 5040, 3120, 960, 120, 0, 58240, 92960, 71280, 30720, 7200, 720, 0, 1106560, 1975680, 1775760, 960960, 319200, 60480, 5040, 0, 24344320, 47653760, 48545280, 31127040, 13104000, 3548160, 564480, 40320
OFFSET
0,5
FORMULA
T(n, k) = k * T(n-1, k-1) + (3*n - 3 + k) * T(n-1, k) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = n! for n >= 0. - Werner Schulte, Mar 13 2024
EXAMPLE
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 4, 2;
[3] 0, 28, 24, 6;
[4] 0, 280, 320, 144, 24;
[5] 0, 3640, 5040, 3120, 960, 120;
[6] 0, 58240, 92960, 71280, 30720, 7200, 720;
[7] 0, 1106560, 1975680, 1775760, 960960, 319200, 60480, 5040;
MAPLE
A371076 := (n, k) -> local j; 3^n*add((-1)^(k - j)*binomial(k, j)*pochhammer(j/3, n), j = 0..k): seq(seq(A371076(n, k), k = 0..n), n = 0..9);
CROSSREFS
Cf. A371077, A007559 (column 1), A000142 (main diagonal), A052609 (subdiagonal).
Sequence in context: A111549 A279411 A022696 * A019155 A107724 A247092
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 10 2024
STATUS
approved