login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371079
a(n) = Sum_{k=0..n} 3^(n - k)*Pochhammer(k/3, n - k). Row sums of A371077.
2
1, 1, 2, 7, 42, 383, 4716, 72831, 1349302, 29123127, 717194888, 19837095511, 608717233346, 20518453925807, 753563361399012, 29948045451609743, 1280446573813600366, 58602977409168609351, 2858550564643752169312, 148037904246807129342247, 8111929349028033318115898
OFFSET
0,3
FORMULA
From Vaclav Kotesovec, Mar 12 2024: (Start)
Recurrence: (n-6)*(3*n - 14)*a(n) = (27*n^3 - 375*n^2 + 1690*n - 2465)*a(n-1) - (81*n^4 - 1458*n^3 + 9726*n^2 - 28519*n + 31035)*a(n-2) + (81*n^5 - 1836*n^4 + 16542*n^3 - 74055*n^2 + 164751*n - 145753)*a(n-3) - (81*n^5 - 1998*n^4 + 19557*n^3 - 94944*n^2 + 228592*n - 218342)*a(n-4) - 2*(3*n - 11)*(9*n^3 - 129*n^2 + 611*n - 957)*a(n-5) + 2*(n-5)*(3*n - 16)*(3*n - 14)*(3*n - 11)*a(n-6).
a(n) ~ sqrt(2*Pi) * 3^(n-1) * n^(n - 7/6) / (Gamma(1/3) * exp(n)) * (1 + Gamma(1/3)^2 / (2*Pi*sqrt(3)*n^(2/3))). (End)
MAPLE
a := n -> local k; add(3^(n - k)*pochhammer(k/3, n - k), k = 0..n):
seq(a(n), n = 0..20);
MATHEMATICA
Table[Sum[3^(n-k) * Pochhammer[k/3, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 12 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Mar 12 2024
STATUS
approved