login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038052
Number of labeled trees of nonempty sets with n points. (Each node is a set of 1 or more points.)
8
1, 1, 2, 7, 42, 376, 4513, 68090, 1238968, 26416729, 646140364, 17837852044, 548713088399, 18612963873492, 690271321314292, 27785827303491579, 1206582732097720126, 56224025231569020724, 2798445211000659147033, 148178324442139816854902, 8317074395027724691495980
OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..379 (first 101 terms from T. D. Noe)
FORMULA
E.g.f.: B(e^x-1) where B is e.g.f. of A000272.
a(n) = Sum_{k=1..n} Stirling2(n, k)*k^(k-2). - Vladeta Jovovic, Sep 20 2003
a(n) ~ (1+exp(1))^(3/2) * n^(n-2) / (exp(n) * (log(1+exp(-1)))^(n-3/2)). - Vaclav Kotesovec, Feb 17 2017
MAPLE
b:= proc(n, m) option remember; `if`(n=0,
m^max(0, m-2), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..21); # Alois P. Heinz, Jul 16 2022
MATHEMATICA
a[0] = 1; a[n_] := Sum[StirlingS2[n, k]*k^(k - 2), {k, 1, n}]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Sep 09 2013, after Vladeta Jovovic *)
CROSSREFS
Sequence in context: A317349 A158840 A359717 * A371079 A066383 A011802
KEYWORD
nonn,nice,easy
AUTHOR
Christian G. Bower, Jan 04 1999
STATUS
approved