login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of labeled trees of nonempty sets with n points. (Each node is a set of 1 or more points.)
8

%I #27 Jul 16 2022 17:42:08

%S 1,1,2,7,42,376,4513,68090,1238968,26416729,646140364,17837852044,

%T 548713088399,18612963873492,690271321314292,27785827303491579,

%U 1206582732097720126,56224025231569020724,2798445211000659147033,148178324442139816854902,8317074395027724691495980

%N Number of labeled trees of nonempty sets with n points. (Each node is a set of 1 or more points.)

%H Alois P. Heinz, <a href="/A038052/b038052.txt">Table of n, a(n) for n = 0..379</a> (first 101 terms from T. D. Noe)

%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>

%F E.g.f.: B(e^x-1) where B is e.g.f. of A000272.

%F a(n) = Sum_{k=1..n} Stirling2(n, k)*k^(k-2). - _Vladeta Jovovic_, Sep 20 2003

%F a(n) ~ (1+exp(1))^(3/2) * n^(n-2) / (exp(n) * (log(1+exp(-1)))^(n-3/2)). - _Vaclav Kotesovec_, Feb 17 2017

%p b:= proc(n, m) option remember; `if`(n=0,

%p m^max(0, m-2), m*b(n-1, m)+b(n-1, m+1))

%p end:

%p a:= n-> b(n, 0):

%p seq(a(n), n=0..21); # _Alois P. Heinz_, Jul 16 2022

%t a[0] = 1; a[n_] := Sum[StirlingS2[n, k]*k^(k - 2), {k, 1, n}]; Table[a[n], {n, 0, 18}] (* _Jean-François Alcover_, Sep 09 2013, after _Vladeta Jovovic_ *)

%Y Cf. A036250, A048802.

%K nonn,nice,easy

%O 0,3

%A _Christian G. Bower_, Jan 04 1999