

A036250


Number of trees of nonempty sets with n points. (Each node is a set of 1 or more points.)


6



1, 1, 2, 3, 7, 14, 35, 85, 231, 633, 1845, 5461, 16707, 51945, 164695, 529077, 1722279, 5664794, 18813369, 62996850, 212533226, 721792761, 2466135375, 8471967938, 29249059293, 101440962296, 353289339927, 1235154230060, 4333718587353, 15255879756033
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Also the number of nonisomorphic connected multigraphs with loops with n edges and multiset density 1, where the multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.  Gus Wiseman, Nov 28 2018


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1717
Richard J. Mathar, Counting Connected Graphs without Overlapping Cycles, arXiv:1808.06264 [math.CO], 2018.
Gus Wiseman, Nonisomorphic representatives of the a(1) = 2 through a(5) = 35 connected multigraphs with loops with multiset density 1.
Index entries for sequences related to trees


FORMULA

G.f.: B(x)  B^2(x)/2 + B(x^2)/2, where B(x) is g.f. for A036249.


MATHEMATICA

max = 30; B[_] = 1; Do[B[x_] = x*Exp[Sum[(B[x^k] + x^k)/k + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; A[x_] = B[x]  B[x]^2/2 + B[x^2]/2; CoefficientList[1 + A[x] + O[x]^max, x] (* JeanFrançois Alcover, Jan 28 2019 *)


CROSSREFS

Essentially the same as A036251.
Cf. A000055, A007718, A007719, A038052, A191646, A303837, A321155, A321229, A321254, A321256, A322111.
Sequence in context: A185089 A180564 A113822 * A191491 A210345 A006660
Adjacent sequences: A036247 A036248 A036249 * A036251 A036252 A036253


KEYWORD

nonn


AUTHOR

Christian G. Bower, Nov 15 1998


STATUS

approved



