OFFSET
0,2
COMMENTS
Number of labeled loop-graphs with n vertices and at most n edges. - Gus Wiseman, Feb 14 2024
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..100
FORMULA
a(n) = 2^(n*(n+1)/2) - binomial(n*(n+1)/2,n+1)*2F1(1,(-n^2+n+2)/2;n+2;-1) = A006125(n) - A116508(n+1) * 2F1(1,(-n^2+n+2)2;n+2;-1), where 2F1(a,b;c;x) is the hypergeometric function. - Ilya Gutkovskiy, May 06 2016
a(n) ~ exp(n) * n^(n - 1/2) / (sqrt(Pi) * 2^(n + 1/2)). - Vaclav Kotesovec, Feb 20 2024
EXAMPLE
From Gus Wiseman, Feb 14 2024: (Start)
The a(0) = 1 through a(2) = 7 loop-graphs (loops shown as singletons):
{} {} {}
{{1}} {{1}}
{{2}}
{{1,2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
(End)
MATHEMATICA
f[n_] := Sum[Binomial[n (n + 1)/2, k], {k, 0, n}]; Array[f, 21, 0] (* Vincenzo Librandi, May 06 2016 *)
Table[Length[Select[Subsets[Subsets[Range[n], {1, 2}]], Length[#]<=n&]], {n, 0, 5}] (* Gus Wiseman, Feb 14 2024 *)
PROG
(PARI) { for (n=0, 100, a=0; for (k=0, n, a+=binomial(n*(n + 1)/2, k)); write("b066383.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 12 2010
(Python)
from math import comb
def A066383(n): return sum(comb(comb(n+1, 2), k) for k in range(n+1)) # Chai Wah Wu, Jul 10 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 23 2001
STATUS
approved