OFFSET
0,6
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1560 (rows 0..20)
FORMULA
E.g.f.: exp(-x) * (Sum_{j >= 0} (1 + y)^binomial(j+1, 2)*x^j/j!). - Andrew Howroyd, Feb 02 2024
EXAMPLE
Triangle begins:
1
0 1
0 1 3 1
0 0 6 17 15 6 1
0 0 3 46 150 228 206 120 45 10 1
Row n = 3 counts the following loop-graphs (loops shown as singletons):
{1,23} {1,2,3} {1,2,3,12} {1,2,3,12,13} {1,2,3,12,13,23}
{2,13} {1,2,13} {1,2,3,13} {1,2,3,12,23}
{3,12} {1,2,23} {1,2,3,23} {1,2,3,13,23}
{12,13} {1,3,12} {1,2,12,13} {1,2,12,13,23}
{12,23} {1,3,23} {1,2,12,23} {1,3,12,13,23}
{13,23} {1,12,13} {1,2,13,23} {2,3,12,13,23}
{1,12,23} {1,3,12,13}
{1,13,23} {1,3,12,23}
{2,3,12} {1,3,13,23}
{2,3,13} {1,12,13,23}
{2,12,13} {2,3,12,13}
{2,12,23} {2,3,12,23}
{2,13,23} {2,3,13,23}
{3,12,13} {2,12,13,23}
{3,12,23} {3,12,13,23}
{3,13,23}
{12,13,23}
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n], {1, 2}], {k}], Length[Union@@#]==n&]], {n, 0, 5}, {k, 0, Binomial[n+1, 2]}]
PROG
(PARI) T(n)={[Vecrev(p) | p<-Vec(serlaplace(exp(-x + O(x*x^n))*(sum(j=0, n, (1 + y)^binomial(j+1, 2)*x^j/j!)))) ]}
{ my(A=T(6)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Feb 02 2024
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Jan 18 2024
STATUS
approved