|
|
A038055
|
|
Number of n-node rooted trees with nodes of 2 colors.
|
|
20
|
|
|
2, 4, 14, 52, 214, 916, 4116, 18996, 89894, 433196, 2119904, 10503612, 52594476, 265713532, 1352796790, 6933598208, 35747017596, 185260197772, 964585369012, 5043220350012, 26467146038744, 139375369621960, 736229024863276, 3900074570513316, 20714056652990194
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
Shifts left and halves under Euler transform.
a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.646542616232949712892713516..., c = 0.41572319484583484264330698410170337587070758092051645875080558178621559423... . - Vaclav Kotesovec, Sep 11 2014, updated Dec 26 2020
|
|
MAPLE
|
spec := [N, {N=Prod(bead, Set(N)), bead=Union(R, B), R=Atom, B=Atom}]; [seq(combstruct[count](spec, size=n), n=1..40)];
# second Maple program:
with(numtheory):
a:= proc(n) option remember; `if`(n<2, 2*n, (add(add(d*
a(d), d=divisors(j))*a(n-j), j=1..n-1))/(n-1))
end:
|
|
MATHEMATICA
|
a[n_] := a[n] = If[n<2, 2*n, (Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-1}])/(n-1)]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)
a[1] = 2; a[n_] := a[n] = Sum[k a[k] a[n - m k]/(n-1), {k, n}, {m, (n-1)/k}]; Table[a[n], {n, 30}] (* Vladimir Reshetnikov, Aug 12 2016 *)
|
|
PROG
|
(PARI) seq(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); 2*A} \\ Andrew Howroyd, May 12 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,eigen,nice,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|