OFFSET
0,2
COMMENTS
The planar maps considered are connected and may contain loops and parallel edges. - Andrew Howroyd, Jan 13 2025
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
T. R. S. Walsh, personal communication.
LINKS
Richard Kapolnai, Gabor Domokos, and Timea Szabo, Generating spherical multiquadrangulations by restricted vertex splittings and the reducibility of equilibrium classes, Periodica Polytechnica Electrical Engineering, 56(1):11-10, 2012. Also arXiv:1206.1698, 2012. See Table 2.
Valery. A. Liskovets, A reductive technique for enumerating nonisomorphic planar maps, Discr. Math., v.156 (1996), 197-217.
Timothy R. Walsh, Generating nonisomorphic maps without storing them, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 161-178.
Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
Timothy R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3
Nicholas C. Wormald, Counting unrooted planar maps, Discrete Math. 36 (1981), no. 2, 205-225.
FORMULA
CROSSREFS
Antidiagonal sums of A277741.
KEYWORD
nonn,nice,changed
AUTHOR
EXTENSIONS
a(18)-a(19) added by Andrew Howroyd, Jan 13 2025
STATUS
approved