login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038049 Number of labeled rooted trees with 2-colored leaves. 13
2, 4, 24, 224, 2880, 47232, 942592, 22171648, 600698880, 18422374400, 630897721344, 23864653578240, 988197253808128, 44460603225407488, 2159714024218951680, 112652924603290615808, 6280048587936003784704, 372616014329572403183616, 23445082059018189741752320 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 185 (3.1.83)

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..150

N. J. A. Sloane, Transforms

Index entries for sequences related to rooted trees

FORMULA

Divides by n and shifts left under exponential transform.

E.g.f.: A(x) = x-LambertW(-x*exp(x)). - Vladeta Jovovic, Mar 08 2003

a(n) = Sum_{k=0..n} (binomial(n, k)*(n-k)^(n-1)).

A(x) = 2*compositional inverse of 2*x/(1+exp(2*x)). - Peter Bala, Oct 14 2011

a(n) ~ n^(n-1) * sqrt((1+LambertW(1/e))) / (e*LambertW(1/e))^n. - Vaclav Kotesovec, Nov 30 2012

MAPLE

a:= n-> add(binomial(n, k)*(n-k)^(n-1), k=0..n):

seq(a(n), n=1..20);  # Alois P. Heinz, Nov 30 2012

MATHEMATICA

Table[n!*Sum[2^j/j!*StirlingS2[n-1, n-j], {j, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Nov 30 2012 *)

CROSSREFS

Cf. A000169, A029856, A038050, A038054, A088789.

Sequence in context: A032107 A141307 A190655 * A151817 A265937 A038058

Adjacent sequences:  A038046 A038047 A038048 * A038050 A038051 A038052

KEYWORD

nonn,eigen

AUTHOR

Christian G. Bower, Jan 04 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 17:01 EST 2021. Contains 349596 sequences. (Running on oeis4.)