OFFSET
1,1
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 768
N. J. A. Sloane, Transforms
FORMULA
Shifts left under Euler transform.
G.f. satisfies: A(x) = x + x*exp( Sum_{n>=1} A(x^n)/n ). - Paul D. Hanna, Oct 19 2005
a(n) ~ c * d^n / n^(3/2), where d = 3.848442876944251389076286931217197... and c = 0.48335853985605895591573724406549734... - Vaclav Kotesovec, Mar 29 2014
MAPLE
A:= proc(n) option remember; if n=0 then 0 else convert(series(x+x* exp(sum(subs(x=x^i, A(n-1))/i, i=1..n-1)), x=0, n+1), polynom) fi end; a:= n-> coeff(A(n), x, n): seq(a(n), n=1..25); # Alois P. Heinz, Aug 22 2008
# second Maple program:
with(numtheory): a:= proc(n) option remember; local d, j; if n<=1 then 2*n else (add(d*a(d), d=divisors(n-1)) +add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-2))/ (n-1) fi end: seq(a(n), n=1..25); # Alois P. Heinz, Sep 06 2008
MATHEMATICA
a[n_] := a[n] = If [n <= 1, 2*n, (Sum[d*a[d], {d, Divisors[n-1]}] + Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-2}])/(n-1)]; Array[a, 25] (* Jean-François Alcover, Mar 13 2015, after Alois P. Heinz *)
PROG
(PARI) {a(n)=local(A=x+x*O(x^n)); for(i=1, n, A=x+x*exp(sum(m=1, n, subst(A, x, x^m)/m))); polcoeff(A, n, x)} \\ Paul D. Hanna, Oct 19 2005
CROSSREFS
KEYWORD
nonn,easy,eigen
AUTHOR
STATUS
approved