login
A151817
a(n) = 2*(2*n)!/n!.
3
2, 4, 24, 240, 3360, 60480, 1330560, 34594560, 1037836800, 35286451200, 1340885145600, 56317176115200, 2590590101299200, 129529505064960000, 6994593273507840000, 405686409863454720000, 25152557411534192640000, 1660068789161256714240000, 116204815241287969996800000
OFFSET
0,1
COMMENTS
(n+1)*a(n) is the number of random walk labelings of the comb graph of length n+1. - Sela Fried, Aug 02 2023
LINKS
Sela Fried and Toufik Mansour, Random walk labelings of perfect trees and other graphs, arXiv:2308.00315 [math.CO], 2023.
FORMULA
From Alexander R. Povolotsky, Jul 06 2009: (Start)
a(n) = 2^(2*n + 1)* Pochhammer(1/2, n).
a(n) = 2^(2*n + 1)*Gamma(n + 1/2) / Gamma(1/2) = 2^(2*n+1)*Gamma(n+1/2)/sqrt(Pi).
a(n) = 2*(2*n - 1)*a(n-1). (End) [Updated by Peter Luschny, Aug 02 2023]
E.g.f.: 2/(1-4*x)^(1/2).- Sergei N. Gladkovskii, Dec 05 2011
G.f.: G(0), where G(k)= 1 + 1/(1 - x*(4*k+2)/(x*(4*k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 04 2013
a(n) = A052718(n+1), n>0.
a(n) = 2*A001813(n). - R. J. Mathar, Mar 12 2017
MATHEMATICA
Table[2*(2*n)!/n!, {n, 0, 50}] (* G. C. Greubel, Feb 21 2017 *)
PROG
(PARI) a(n)=2*(2*n)!/n! \\ Charles R Greathouse IV, Dec 05 2011
CROSSREFS
Cf. A052718, A001813, row sums of A155951.
Sequence in context: A141307 A190655 A038049 * A265937 A038058 A062531
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Jan 31 2009
EXTENSIONS
Typo in definition corrected by N. J. A. Sloane, Jul 12 2009
New name from Sergei N. Gladkovskii, Dec 05 2011
STATUS
approved