login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052718
E.g.f. 1 - x - sqrt(1-4*x).
11
0, 1, 4, 24, 240, 3360, 60480, 1330560, 34594560, 1037836800, 35286451200, 1340885145600, 56317176115200, 2590590101299200, 129529505064960000, 6994593273507840000, 405686409863454720000, 25152557411534192640000
OFFSET
0,3
LINKS
FORMULA
a(0)=0, a(1)=1, a(n) = 2^(2n-1) * Gamma(n-1/2) / sqrt(Pi) for n>=2. - Jon E. Schoenfield, Jan 11 2015
D-finite with recurrence: a(1)=1; a(2)=4; (2-4*n)*a(n) + a(n+1) = 0.
O.g.f.: 1-x-_2F_0(-1/2,1;;4*x). - R. J. Mathar, Feb 23 2010
G.f.: 1-x - G(0)/2, where G(k)= 1 + 1/(1 - x*(4*k-2)/(x*(4*k-2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 04 2013
a(n) = n!*A068875(n-1). - R. J. Mathar, Oct 18 2013
MAPLE
spec := [S, {B=Union(Z, C), C=Prod(B, B), S=Union(B, C)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
s=2; lst={0, 1}; Do[s+=n*s+s; AppendTo[lst, s], {n, 0, 5!, 4}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 50}, CoefficientList[Series[1 - x - Sqrt[1 - 4*x], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, Feb 16 2017 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec(serlaplace(1-x-sqrt(1-4*x)))) \\ G. C. Greubel, Feb 16 2017
CROSSREFS
Sequence in context: A346631 A307826 A239840 * A061640 A126391 A006088
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved