OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..350
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 673
FORMULA
Recurrence: a(1)=0, a(3)=6, a(2)=2, n*a(n+1) = (4*n^2 - 2*n - 6)*a(n).
G.f.: x*(d/dx)(x^2 * Hypergeometric2F0([1, 1/2], [], 4*x)). - G. C. Greubel, May 28 2022
MAPLE
spec := [S, {C=Union(B, Z), B=Prod(C, C), S=Prod(Z, C)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
with(combinat):with(combstruct):a[0]:=0:for n from 1 to 30 do a[n]:=sum((count(Permutation(n*2-2), size=n-1)), j=0..n) od: seq(a[n], n=0..22); # Zerinvary Lajos, May 03 2007
MATHEMATICA
With[{nn=20}, CoefficientList[Series[x (1-Sqrt[1-4x])/2, {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Dec 20 2015 *)
Table[Boole[n==1] + n!*CatalanNumber[n-2], {n, 0, 30}] (* G. C. Greubel, May 28 2022 *)
PROG
(MuPAD) combinat::catalan(n)*(n+2)! $ n = 0..15; // Zerinvary Lajos, Feb 15 2007
(Magma) [n le 1 select 0 else Factorial(n)*Catalan(n-2): n in [0..30]]; // G. C. Greubel, May 28 2022
(SageMath) [bool(n==1)/2 + factorial(n)*catalan_number(n-2) for n in (0..30)] # G. C. Greubel, May 28 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved