OFFSET
0,6
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..350
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 678
FORMULA
D-finite with recurrence: a(0) = a(1) = a(2) = a(3) = a(4) = 0, a(5)=120, a(n+3) = (9+7*n)*a(n+2) + (14 - 19*n - 13*n^2)*a(n+1) - (20 + 22*n - 2*n^2 - 4*n^3)*a(n).
a(n) = n!*A000344(n-3). - R. J. Mathar, Oct 18 2013
From G. C. Greubel, May 28 2022: (Start)
G.f.: 5!*x^5*hypergeometric2F0([5/2, 3], [], 4*x).
E.g.f.: (1/2)*(1 - 5*x + 5*x^2 - (1 - 3*x + x^2)*sqrt(1-4*x)). (End)
MAPLE
spec := [S, {C=Union(B, Z), B=Prod(C, C), S=Prod(B, B, C)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[((1-2x-Sqrt[1-4x])^2 (1-Sqrt[1-4x]))/8, {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Aug 30 2021 *)
Table[If[n<5, 0, 10*(n-2)!*Binomial[n-3, 2]*CatalanNumber[n-3]], {n, 0, 30}] (* G. C. Greubel, May 28 2022 *)
PROG
(SageMath)
def A052722(n):
if (n<5): return 0
else: return 10*factorial(n-2)*binomial(n-3, 2)*catalan_number(n-3)
[A052722(n) for n in (0..30)] # G. C. Greubel, May 28 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved