login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052716
Expansion of e.g.f. (x + 1 - sqrt(1-6*x+x^2))/2.
10
0, 2, 4, 36, 528, 10800, 283680, 9102240, 345058560, 15090727680, 747888422400, 41422381862400, 2535569103513600, 169983582318950400, 12386182292118835200, 974723523832041984000, 82385641026424479744000
OFFSET
0,2
COMMENTS
With a(n)=1, also number of labeled mobiles with n nodes and 2-colored internal (non-leaf) nodes - Christian G. Bower, Jun 07 2005
FORMULA
D-finite with recurrence: a(2)=4, a(1)=2, (n^2-1)*a(n) = (3+6*n)*a(n+1) - a(n+2).
a(n) = n!*A006318(n-1), n>=2. - R. J. Mathar, Oct 26 2013
MAPLE
spec := [S, {C=Union(B, Z), B=Prod(S, C), S=Union(Z, C)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(x+1-Sqrt[1-6x+x^2])/2, {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Apr 19 2020 *)
PROG
(Magma) [n le 1 select 1-(-1)^n else Factorial(n)*(&+[Catalan(k)*Binomial(n+k-1, n-k-1): k in [0..n-1]]): n in [0..30]]; // G. C. Greubel, May 28 2022
(SageMath) [bool(n==1)+factorial(n)*sum(binomial(n+k-1, n-k-1)*catalan_number(k) for k in (0..n-1)) for n in (0..30)] # G. C. Greubel, May 28 2022
CROSSREFS
Sequence in context: A189002 A304558 A215251 * A081976 A326932 A063184
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved