Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 May 28 2022 04:02:36
%S 0,2,4,36,528,10800,283680,9102240,345058560,15090727680,747888422400,
%T 41422381862400,2535569103513600,169983582318950400,
%U 12386182292118835200,974723523832041984000,82385641026424479744000
%N Expansion of e.g.f. (x + 1 - sqrt(1-6*x+x^2))/2.
%C With a(n)=1, also number of labeled mobiles with n nodes and 2-colored internal (non-leaf) nodes - _Christian G. Bower_, Jun 07 2005
%H G. C. Greubel, <a href="/A052716/b052716.txt">Table of n, a(n) for n = 0..345</a>
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=672">Encyclopedia of Combinatorial Structures 672</a>
%H <a href="/index/Mo#mobiles">Index entries for sequences related to mobiles</a>
%F D-finite with recurrence: a(2)=4, a(1)=2, (n^2-1)*a(n) = (3+6*n)*a(n+1) - a(n+2).
%F a(n) = n!*A006318(n-1), n>=2. - _R. J. Mathar_, Oct 26 2013
%p spec := [S,{C=Union(B,Z),B=Prod(S,C),S=Union(Z,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
%t With[{nn=20},CoefficientList[Series[(x+1-Sqrt[1-6x+x^2])/2,{x,0,nn}],x] Range[ 0,nn]!] (* _Harvey P. Dale_, Apr 19 2020 *)
%o (Magma) [n le 1 select 1-(-1)^n else Factorial(n)*(&+[Catalan(k)*Binomial(n+k-1, n-k-1): k in [0..n-1]]): n in [0..30]]; // _G. C. Greubel_, May 28 2022
%o (SageMath) [bool(n==1)+factorial(n)*sum(binomial(n+k-1, n-k-1)*catalan_number(k) for k in (0..n-1)) for n in (0..30)] # _G. C. Greubel_, May 28 2022
%Y Cf. A006318, A108531.
%K easy,nonn
%O 0,2
%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000