login
A052719
Expansion of e.g.f. (1 - 2*x*sqrt(1-4*x))*(1 - sqrt(1-4*x))/4.
9
0, 0, 0, 6, 72, 1080, 20160, 453600, 11975040, 363242880, 12454041600, 476367091200, 20113277184000, 929233405900800, 46630621823385600, 2525825348766720000, 146886458743664640000, 9127944221927731200000
OFFSET
0,4
LINKS
FORMULA
D-finite with recurrence: a(1)=0, a(2)=0, a(3)=6, a(n+2) = (2 + 5*n)*a(n+1) + (6 + 2*n - 4*n^2)*a(n)
a(n) = n!*A000245(n-2). - R. J. Mathar, Oct 26 2013
From G. C. Greubel, May 28 2022: (Start)
G.f.: 6*x^3*Hypergeometric2F0([2, 3/2], [], 4*x).
E.g.f.: (1/4)*(1 + 2*x - 8*x^2 - (1 + 2*x)*sqrt(1-4*x)). (End)
MAPLE
spec := [S, {B=Union(Z, C), C=Prod(B, B), S=Prod(B, C)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
Table[If[n<2, 0, 3*(n-2)*(n-1)!*CatalanNumber[n-2]], {n, 0, 30}] (* G. C. Greubel, May 28 2022 *)
PROG
(SageMath) [0, 0]+[3*(n-2)*factorial(n-1)*catalan_number(n-2) for n in (2..30)] # G. C. Greubel, May 28 2022
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved