login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068875
Expansion of (1 + x*C)*C, where C = (1 - (1 - 4*x)^(1/2))/(2*x) is the g.f. for Catalan numbers, A000108.
24
1, 2, 4, 10, 28, 84, 264, 858, 2860, 9724, 33592, 117572, 416024, 1485800, 5348880, 19389690, 70715340, 259289580, 955277400, 3534526380, 13128240840, 48932534040, 182965127280, 686119227300, 2579808294648, 9723892802904
OFFSET
0,2
COMMENTS
A Catalan transform of A040000 under the mapping g(x) -> g(x*c(x)), where c(x) is the g.f. of A000108. Sequence A040000 can be retrieved using the mapping g(x) -> g(x*(1-x)). A040000(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k) * (-1)^k * a(n-k). a(n) and A040000 may be described as a Catalan pair. - Paul Barry, Nov 14 2004
a(n) is the number of Dyck (n+1)-paths all of whose nonterminal descents to ground level are of odd length. For example, a(2) counts UUUDDD, UUDUDD, UDUUDD, UDUDUD. - David Callan, Jul 25 2005
From Gary W. Adamson, Jul 11 2011: (Start)
a(n) is the sum of the top row terms in M^n, where M is the following infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
0, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
0, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
...
For example, the top row of M^3 = (2, 4, 3, 1) with sum = 10 = a(3). (End)
For n >= 1, a(n) is the number of binary trees with n+1 internal node in which one of the subtrees of the root is empty. Cf. A002057. [Sedgewick and Flajolet] - Geoffrey Critzer, Jan 05 2013
Empirical: a(n) is the number of entries of absolute value 1 that appear among all partitions in the canonical basis of the Temperley-Lieb algebra of order n. - John M. Campbell, Oct 17 2017
For n >= 1, a(n) is the number of Dyck paths of size n+2, whose corresponding unit interval graph has P3-hull number equal to 2. This result is due to Alrik Sandberg. - Per W. Alexandersson, Jan 09 2024
REFERENCES
R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, p. 225.
LINKS
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995), 743-751. [Annotated scanned copy]
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
FORMULA
Apart from initial term, twice Catalan numbers.
G.f.: (1 - x - sqrt(1 - 4*x)) / x. - Michael Somos, Apr 13 2012
From Paul Barry, Nov 14 2004: (Start)
G.f.: (1 + x*c(x))/(1 - x*c(x)), where c(x) is the g.f. of A000108.
a(n) = C(n)*(2-0^n), where C(n) = A000108(n).
a(n) = Sum_{j=0..n} Sum_{k=0..n} binomial(2*n, n-k) *((2*k + 1)/(n + k + 1)) * binomial(k, j) * (-1)^(j-k) * (2 - 0^j). (End)
Assuming offset 1, then series reversion of g.f. A(x) is -A(-x). - Michael Somos, Aug 17 2005
Assuming offset 2, then A(x) satisfies A(x - x^2) = x^2 - x^4 and so A(x) = C(x)^2 - C(x)^4, A(A(x)) = C(x)^4 - C(x)^8, A(A(A(x))) = C(x)^8 - C(x)^16, etc., where C(x) = (1-sqrt(1-4*x))/2 = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + ... . - Paul D. Hanna, May 16 2008
Apart from initial term, INVERTi transform of A000984(n+1) = binomial(2*n+2,n+1), also, for n >= 1, a(n) = (1/Pi)*Integral_{x=0..4} x^(n-1)*sqrt(x*(4 - x)). - Groux Roland, Mar 15 2011
D-finite with recurrence (n+2)*a(n) - 2*(2*n+1)*a(n-1) = 0, n > 1. - R. J. Mathar, Nov 14 2011
For n > 0, a(n) = C(2*n+2, n+1) mod 4*C(2*n, n - 1). - Robert G. Wilson v, May 02 2012
For n > 0, a(n) = 2^(2*n + 1) * Gamma(n + 1/2)/(sqrt(Pi) * (n + 1)!). - Vaclav Kotesovec, Sep 16 2013
G.f.: 1 + 2*x/(Q(0) - x), where Q(k) = 2*x + (k + 1)/(2*k + 1) - 2*x*(k + 1)/(2*k + 1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013
G.f.: 3 - 4*x - 2*S(0), where S(k) = 2*k + 1 - x*(2*k + 3)/(1 - x*(2*k + 1)/S(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 23 2013
0 = a(n)*(16*a(n+1) - 10*a(n+2)) + a(n+1)*(2*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Jun 18 2014
If A(x)^t = 1 + 2*t*x + Sum_{n >= 2} t*P(n,t)*x^n, then we conjecture that all the zeros of the polynomial P(n,t) lie on the vertical line Re(t) = -n/2 in the complex plane. - Peter Bala, Oct 05 2015
a(n+1) = a(n) + (1/2)*(Sum_{k=0..n} a(k)*a(n-k)) if n > 0. - Michael Somos, Apr 22 2022
b(n) = a(n+1) - a(n) for all n in Z if b(0) = 2, a(-1) = -1, a(0) = 0, a(-1) = 3, a(-2) = -1 where b = A071721. - Michael Somos, Apr 23 2022
EXAMPLE
G.f. = 1 + 2*x + 4*x^2 + 10*x^3 + 28*x^4 + 84*x^5 + 264*x^6 + 858*x^7 + ...
For example, the canonical basis of the Temperley-Lieb algebra of order 3 is {{{-3, 1}, {-2, -1}, {2, 3}}, {{-3, 3}, {-2, 2}, {-1, 1}}, {{-3, 3}, {-2, -1}, {1, 2}}, {{-3, -2}, {-1, 1}, {2, 3}}, {{-3, -2}, {-1, 3}, {1, 2}}}, and we see that the total number of entries of absolute value 1 that appear among the partitions in this basis is a(3) = 10.
MAPLE
Z:=(1-sqrt(1-4*x))/2/x: G:=(2-(1+x)*Z)/Z: Gser:=series(-G, x=0, 30): (1, seq(coeff(Gser, x, n), n=2..26)); # Zerinvary Lajos, Dec 23 2006
Z:=-(1-z-sqrt(1-z))/sqrt(1-z): Zser:=series(Z, z=0, 32): (1, seq(coeff(Zser*4^n, z, n), n=2..26)); # Zerinvary Lajos, Jan 01 2007
A068875List := proc(m) local A, P, n; A := [1, 2]; P := [2];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
A := [op(A), P[-1]] od; A end: A068875List(26); # Peter Luschny, Mar 24 2022
MATHEMATICA
nn=30; t=(1-(1-4x )^(1/2))/(2x); Prepend[Table[Coefficient[Series[1+x (y t -y+1)^2, {x, 0, nn}], x ^n y], {n, 2, nn}], 1] (* Geoffrey Critzer, Jan 05 2013 *)
a[ n_] := If[ n < 1, Boole[ n == 0], 2 Binomial[ 2 n, n]/(n + 1)]; (* Michael Somos, Jun 18 2014 *)
a[ n_] := SeriesCoefficient[ -1 + 4 / (1 + Sqrt[ 1 - 4 x]), {x, 0, n}]; (* Michael Somos, Jun 18 2014 *)
Table[If[n==0, 1, 2 CatalanNumber[n]], {n, 0, 25}] (* Peter Luschny, Feb 27 2017 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 2 * binomial( 2*n, n) / (n + 1))}; /* Michael Somos, Aug 17 2005 */
(PARI) {a(n) = if( n<0, 0, polcoeff( -1 + 4 / (1 + sqrt(1 - 4*x + x * O(x^n))), n))}; /* Michael Somos, Aug 17 2005 */
(Magma) [1] cat [2*Binomial( 2*n, n)/(n+1): n in [1..30]]; // Vincenzo Librandi, Oct 17 2017
CROSSREFS
A002420 and A262543 are essentially the same sequence as this.
Sequence in context: A331938 A302146 A202135 * A262543 A348197 A289709
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 06 2002
STATUS
approved