login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006088
a(n) = (2^n + 2) a(n-1) (kissing number of Barnes-Wall lattice in dimension 2^n).
(Formerly M3606)
4
1, 4, 24, 240, 4320, 146880, 9694080, 1260230400, 325139443200, 167121673804800, 171466837323724800, 351507016513635840000, 1440475753672879672320000, 11803258325595576034990080000, 193408190923209108909347450880000
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, p. 151.
Robert L. Griess Jr., Pieces of 2^d: Existence and uniqueness for Barnes-Wall and Ypsilanti lattices, arXiv:math/0403480 [math.GR], Mar 28 2004. See Proposition 8.9.
J. Leech, Some sphere packings in higher space, Canad. J. Math., 16 (1964), 657-682.
J. Leech & N. J. A. Sloane, Correspondence, 1975
C. Musès, The dimensional family approach in (hyper)sphere packing..., Applied Math. Computation 88 (1997), pp. 1-26, see p. 22.
G. Nebe and N. J. A. Sloane, Table of highest kissing numbers known
FORMULA
a(n) = (2+2)(2+4)(2+8)(2+16)...(2+2^n).
From Paul D. Hanna, Sep 16 2009: (Start)
G.f.: Sum_{n>=0} 2^(n*(n+1)/2) * x^n/[Product_{k=1..n+1} (1-2^k*x)];
contrast with:
1 = Sum_{n>=0} 2^(n*(n+1)/2) * x^n/[Product_{k=1..n+1} (1+2^k*x)]. (End)
a(n) ~ c * 2^(n*(n+1)/2), where c = A081845. - Vaclav Kotesovec, Dec 31 2015
MAPLE
a[0]:=1: for n from 1 to 16 do a[n]:=(2^n+2)*a[n-1] od: seq(a[n], n=0..16); # Emeric Deutsch, Dec 10 2004
MATHEMATICA
RecurrenceTable[{a[0]==1, a[n]==(2^n + 2) a[n-1]}, a[n], {n, 0, 25}] (* Vincenzo Librandi, Dec 31 2015 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, 2^(m*(m+1)/2)*x^m/prod(k=1, m+1, 1-2^k*x+x*O(x^n))), n)} \\ Paul D. Hanna, Sep 16 2009
(PARI) a(n) = prod(k=1, n, 2+2^k); \\ Michel Marcus, Jan 01 2016
(Magma) I:=[4]; [1] cat [n le 1 select I[n] else (2^n + 2)*Self(n-1): n in [1..20]]; // Vincenzo Librandi, Dec 31 2015
CROSSREFS
Cf. A028362. - Paul D. Hanna, Sep 16 2009
Cf. A081845.
Sequence in context: A052718 A061640 A126391 * A325963 A141013 A330469
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, John Leech
EXTENSIONS
More terms from Emeric Deutsch, Dec 10 2004
Replaced arXiv URL with non-cached version - R. J. Mathar, Oct 23 2009
STATUS
approved