|
|
A006087
|
|
Unitary harmonic means H(n) of the unitary harmonic numbers (A006086).
(Formerly M0452)
|
|
8
|
|
|
1, 2, 3, 4, 4, 7, 7, 6, 9, 13, 10, 13, 10, 7, 11, 15, 10, 15, 9, 12, 7, 17, 12, 18, 16, 14, 19, 20, 19, 12, 15, 20, 10, 20, 18, 22, 19, 13, 12, 13, 17, 29, 18, 33, 20, 23, 29, 34, 23, 22, 31, 38, 24, 23, 38, 33, 37, 40, 19, 38, 24, 37, 29, 40, 22, 34, 24, 33
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Let d(n) and sigma(n) be number and sum of unitary divisors of n; then unitary harmonic mean of unitary divisors is H(n)=n*d(n)/sigma(n).
Each term appears a finite number of times in the sequence (Hagis and Lord, 1975). - Amiram Eldar, Mar 10 2023
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Peter Hagis, Jr. and Graham Lord, Unitary harmonic numbers, Proc. Amer. Math. Soc., 51 (1975), 1-7. (Annotated scanned copy)
|
|
FORMULA
|
|
|
MAPLE
|
A034444 := proc(n) 2^nops(ifactors(n)[2]) ; end: A034448 := proc(n) local ans, i, ifs ; ans :=1 ; ifs := ifactors(n)[2] ; for i from 1 to nops(ifs) do ans := ans*(1+ifs[i][1]^ifs[i][2]) ; od ; RETURN(ans) ; end: A006086 := proc(n) n*A034444(n)/A034448(n) ; end: for n from 1 to 5000000 do uhn := A006086(n) : if type(uhn, 'integer') then printf("%d, ", uhn) ; fi ; od : # R. J. Mathar, Jun 06 2007
|
|
MATHEMATICA
|
ud[n_] := 2^PrimeNu[n]; usigma[n_] := Sum[ If[ GCD[d, n/d] == 1, d, 0], {d, Divisors[n]}]; a[n_] := n*ud[n]/usigma[n]; a[1] = 1; Reap[ Do[ If[ IntegerQ[h = a[n]], Print[h]; Sow[h]], {n, 1, 10^7}]][[2, 1]] (* Jean-François Alcover, May 16 2013 *)
uh[n_] := n * Times @@ (2/(1 + Power @@@ FactorInteger[n])); uh[1] = 1; Select[Array[uh, 10^6], IntegerQ] (* Amiram Eldar, Mar 10 2023 *)
|
|
PROG
|
(PARI) {ud(n)=2^omega(n)} {sud(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d))} {H(n)=n*ud(n)/sud(n)} for(n=1, 10000000, if(((n*ud(n))%sud(n))==0, print1(H(n)", "))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008
(PARI) uhmean(n) = {my(f = factor(n)); n*prod(i=1, #f~, 2/(1+f[i, 1]^f[i, 2])); };
lista(kmax) = {my(uh); for(k = 1, kmax, uh = uhmean(k); if(denominator(uh) == 1, print1(uh, ", "))); } \\ Amiram Eldar, Mar 10 2023
(Haskell)
import Data.Ratio ((%), numerator, denominator)
a006087 n = a006087_list !! (n-1)
a006087_list = map numerator $ filter ((== 1) . denominator) $
map uhm [1..] where uhm n = (n * a034444 n) % (a034448 n)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008
|
|
STATUS
|
approved
|
|
|
|