login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136330
A triangular sequence from 2^n times the coefficients of characteristic polynomials of a rational tridiagonal matrix type: M(3)= {{1/2,-1,0} {-1,1/2,-m}, {0,-1,1/2}}};m=-1; polynomial recursion associated is: p(x, n) = (1 - 2*x)*p(x, n - 1)/2 - p(x, n - 2);.
0
1, 1, -2, -3, -4, 4, -7, 10, 12, -8, 5, 40, -24, -32, 16, 33, -10, -152, 48, 80, -32, 13, -236, -36, 480, -80, -192, 64, -119, -222, 1044, 360, -1360, 96, 448, -128, -171, 960, 1632, -3648, -1760, 3584, 0, -1024, 256, 305, 2190, -4464, -8352, 10976, 6720, -8960, -512, 2304, -512, 989, -2260, -15372, 15168, 34720
OFFSET
1,3
COMMENTS
Row sums are (2^n times) : {1, -1, -3, 7, 5, -33, 13, 119, -171, -305, 989}.
This type of matrix was suggested to me by the Cartan matrix type with the factor (2-x) in the recursion which has rational opposite (1-2*x).
FORMULA
Matrix: M(n,m,d)=If[ n == m, 1/2, If[n == d && m ==d - 1, -1, If[(n == m - 1 || n == m + 1), -1, 0]]]; out_n,m=Coefficient(2^n*CharacteristicPolynomial[M(n,m,d)); Polynomial recursion: p(x, n) = (1 - 2*x)*p(x, n - 1)/2 - p(x, n - 2); out_n,m=Coefficient(2^n*p(x,n)).
EXAMPLE
{1},
{1, -2},
{-3, -4, 4},
{-7, 10, 12, -8},
{5, 40, -24, -32, 16},
{33, -10, -152, 48, 80, -32},
{13, -236, -36, 480, -80, -192, 64},
{-119, -222, 1044, 360, -1360, 96, 448, -128},
{-171, 960, 1632, -3648, -1760, 3584, 0, -1024, 256},
{305, 2190, -4464, -8352, 10976, 6720, -8960, -512, 2304, -512},
{989, -2260, -15372, 15168, 34720, -29568, -22400, 21504, 2304, -5120, 1024}
MATHEMATICA
T[n_, m_, d_] := If[ n == m, 1/2, If[n == d && m == d - 1, -1, If[(n == m - 1 || n == m + 1), -1, 0]]]; M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}]; a1 = Table[M[d], {d, 1, 10}]; Table[2^d*Det[M[d]], {d, 1, 10}]; g = Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}]; a = Join[{{1}}, Table[2^d*CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]]; Flatten[a] (* Polynomial recursion*) Clear[p] p[x, 0] = 1; p[x, 1] = (1 - 2*x)/2; p[x, 2] = (-3 - 4 x + 4*x^2)/4; p[x_, n_] := p[x, n] = (1 - 2*x)*p[x, n - 1]/2 - p[x, n - 2]; Table[ExpandAll[2^n*p[x, n]], {n, 0, Length[g] - 1}]; Flatten[Table[CoefficientList[2^n*p[x, n], x], {n, 0, Length[g] - 1}]]
CROSSREFS
Sequence in context: A006087 A364675 A241315 * A294267 A301763 A236129
KEYWORD
tabl,uned,sign
AUTHOR
Roger L. Bagula, Apr 12 2008
STATUS
approved