login
A364675
Number of integer partitions of n whose nonzero first differences are a submultiset of the parts.
6
1, 1, 2, 3, 4, 4, 7, 7, 10, 12, 15, 15, 26, 25, 35, 45, 55, 60, 86, 94, 126, 150, 186, 216, 288, 328, 407, 493, 610, 699, 896, 1030, 1269, 1500, 1816, 2130, 2620, 3029, 3654, 4300, 5165, 5984, 7222, 8368, 9976, 11637, 13771, 15960, 18978, 21896, 25815, 29915
OFFSET
0,3
COMMENTS
Conjecture: For subsets of {1..n} instead of partitions of n we have A101925.
Conjecture: The strict version is A154402.
EXAMPLE
The partition y = (3,2,1,1) has first differences (1,1,0), and (1,1) is a submultiset of y, so y is counted under a(7).
The a(1) = 1 through a(8) = 10 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (221) (33) (421) (44)
(111) (211) (2111) (42) (2221) (422)
(1111) (11111) (222) (3211) (2222)
(2211) (22111) (4211)
(21111) (211111) (22211)
(111111) (1111111) (32111)
(221111)
(2111111)
(11111111)
MATHEMATICA
submultQ[cap_, fat_] := And@@Function[i, Count[fat, i] >= Count[cap, i]] /@ Union[List@@cap];
Table[Length[Select[IntegerPartitions[n], submultQ[Differences[Union[#]], #]&]], {n, 0, 30}]
CROSSREFS
For subsets of {1..n} we appear to have A101925, A364671, A364672.
The strict case (no differences of 0) appears to be A154402.
Starting with the distinct parts gives A342337.
For disjoint multisets: A363260, subsets A364463, strict A364464.
For overlapping multisets: A364467, ranks A364537, strict A364536.
For subsets instead of submultisets we have A364673.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A236912 counts sum-free partitions, complement A237113.
A325325 counts partitions with distinct first differences.
Sequence in context: A342337 A167932 A006087 * A241315 A136330 A294267
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 04 2023
STATUS
approved