OFFSET
0,3
COMMENTS
EXAMPLE
The partition y = (3,2,1,1) has first differences (1,1,0), and (1,1) is a submultiset of y, so y is counted under a(7).
The a(1) = 1 through a(8) = 10 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (221) (33) (421) (44)
(111) (211) (2111) (42) (2221) (422)
(1111) (11111) (222) (3211) (2222)
(2211) (22111) (4211)
(21111) (211111) (22211)
(111111) (1111111) (32111)
(221111)
(2111111)
(11111111)
MATHEMATICA
submultQ[cap_, fat_] := And@@Function[i, Count[fat, i] >= Count[cap, i]] /@ Union[List@@cap];
Table[Length[Select[IntegerPartitions[n], submultQ[Differences[Union[#]], #]&]], {n, 0, 30}]
CROSSREFS
The strict case (no differences of 0) appears to be A154402.
Starting with the distinct parts gives A342337.
For subsets instead of submultisets we have A364673.
A325325 counts partitions with distinct first differences.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 04 2023
STATUS
approved